Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083202224> ?p ?o ?g. }
- W2083202224 endingPage "1741" @default.
- W2083202224 startingPage "1731" @default.
- W2083202224 abstract "As the top-down fabrication techniques for silicon-based electronic materials have reached the scale of molecular lengths, researchers have been investigating nanostructured materials to build electronics from individual molecules. Researchers have directed extensive experimental and theoretical efforts toward building functional optoelectronic devices using individual organic molecules and fabricating metal-molecule junctions. Although this method has many advantages, its limitations lead to large disagreement between experimental and theoretical results. This Account describes a new method to create molecular electronic devices, covalently bridging a gap in a single-walled carbon nanotube (SWNT) with an electrically functional molecule. First, we introduce a molecular-scale gap into a nanotube by precise oxidative cutting through a lithographic mask. Now functionalized with carboxylic acids, the ends of the cleaved carbon nanotubes are reconnected with conjugated diamines to give robust diamides. The molecular electronic devices prepared in this fashion can withstand and respond to large environmental changes based on the functional groups in the molecules. For example, with oligoanilines as the molecular bridge, the conductance of the device is sensitive to pH. Similarly, using diarylethylenes as the bridge provides devices that can reversibly switch between conjugated and nonconjugated states. The molecular bridge can perform the dual task of carrying electrical current and sensing/recognition through biological events such as protein/substrate binding and DNA hybridization. The devices based on DNA can measure the difference in electrical properties of complementary and mismatched strands. A well-matched duplex DNA 15-mer in the gap exhibits a 300-fold lower resistance than a duplex with a GT or CA mismatch. This system provides an ultrasensitive way to detect single-nucleotide polymorphisms at the individual molecule level. Restriction enzymes can cleave certain cDNA strands assembled between the SWNT electrodes; therefore, these strands maintain their native conformation when bridging the ends of the SWNTs. This methodology for creating novel molecular circuits forges both literal and figurative connections between chemistry, physics, materials science, and biology and promises a new generation of integrated multifunctional sensors and devices." @default.
- W2083202224 created "2016-06-24" @default.
- W2083202224 creator A5007637381 @default.
- W2083202224 creator A5016518705 @default.
- W2083202224 creator A5032403192 @default.
- W2083202224 creator A5089136882 @default.
- W2083202224 date "2008-09-18" @default.
- W2083202224 modified "2023-10-09" @default.
- W2083202224 title "Molecular Electronic Devices Based on Single-Walled Carbon Nanotube Electrodes" @default.
- W2083202224 cites W1487183720 @default.
- W2083202224 cites W1646294624 @default.
- W2083202224 cites W1678777510 @default.
- W2083202224 cites W1967964348 @default.
- W2083202224 cites W1968490718 @default.
- W2083202224 cites W1971944253 @default.
- W2083202224 cites W1985908330 @default.
- W2083202224 cites W1987416224 @default.
- W2083202224 cites W1999035972 @default.
- W2083202224 cites W2006134182 @default.
- W2083202224 cites W2013154277 @default.
- W2083202224 cites W2013645886 @default.
- W2083202224 cites W2013772368 @default.
- W2083202224 cites W2015593083 @default.
- W2083202224 cites W2016085565 @default.
- W2083202224 cites W2016543490 @default.
- W2083202224 cites W2018433273 @default.
- W2083202224 cites W2018858346 @default.
- W2083202224 cites W2023082827 @default.
- W2083202224 cites W2023150460 @default.
- W2083202224 cites W2023690573 @default.
- W2083202224 cites W2023817834 @default.
- W2083202224 cites W2031019739 @default.
- W2083202224 cites W2033160624 @default.
- W2083202224 cites W2035794494 @default.
- W2083202224 cites W2037940890 @default.
- W2083202224 cites W2045725637 @default.
- W2083202224 cites W2048975130 @default.
- W2083202224 cites W2053192345 @default.
- W2083202224 cites W2055400384 @default.
- W2083202224 cites W2060000676 @default.
- W2083202224 cites W2060888175 @default.
- W2083202224 cites W2079148569 @default.
- W2083202224 cites W2082511366 @default.
- W2083202224 cites W2083412773 @default.
- W2083202224 cites W2085691644 @default.
- W2083202224 cites W2090329067 @default.
- W2083202224 cites W2092005538 @default.
- W2083202224 cites W2094617324 @default.
- W2083202224 cites W2097541628 @default.
- W2083202224 cites W2108878769 @default.
- W2083202224 cites W2114692337 @default.
- W2083202224 cites W2115116123 @default.
- W2083202224 cites W2115940597 @default.
- W2083202224 cites W2116267801 @default.
- W2083202224 cites W2122009082 @default.
- W2083202224 cites W2122126515 @default.
- W2083202224 cites W2122414379 @default.
- W2083202224 cites W2123241183 @default.
- W2083202224 cites W2130686586 @default.
- W2083202224 cites W2140138690 @default.
- W2083202224 cites W2147747013 @default.
- W2083202224 cites W2149965098 @default.
- W2083202224 cites W2156862074 @default.
- W2083202224 cites W2157674267 @default.
- W2083202224 cites W2164370375 @default.
- W2083202224 cites W2166294424 @default.
- W2083202224 cites W2167903456 @default.
- W2083202224 cites W4243329785 @default.
- W2083202224 cites W4295067868 @default.
- W2083202224 doi "https://doi.org/10.1021/ar8000266" @default.
- W2083202224 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18798657" @default.
- W2083202224 hasPublicationYear "2008" @default.
- W2083202224 type Work @default.
- W2083202224 sameAs 2083202224 @default.
- W2083202224 citedByCount "182" @default.
- W2083202224 countsByYear W20832022242012 @default.
- W2083202224 countsByYear W20832022242013 @default.
- W2083202224 countsByYear W20832022242014 @default.
- W2083202224 countsByYear W20832022242015 @default.
- W2083202224 countsByYear W20832022242016 @default.
- W2083202224 countsByYear W20832022242017 @default.
- W2083202224 countsByYear W20832022242018 @default.
- W2083202224 countsByYear W20832022242019 @default.
- W2083202224 countsByYear W20832022242020 @default.
- W2083202224 countsByYear W20832022242021 @default.
- W2083202224 countsByYear W20832022242022 @default.
- W2083202224 countsByYear W20832022242023 @default.
- W2083202224 crossrefType "journal-article" @default.
- W2083202224 hasAuthorship W2083202224A5007637381 @default.
- W2083202224 hasAuthorship W2083202224A5016518705 @default.
- W2083202224 hasAuthorship W2083202224A5032403192 @default.
- W2083202224 hasAuthorship W2083202224A5089136882 @default.
- W2083202224 hasConcept C111368507 @default.
- W2083202224 hasConcept C112613896 @default.
- W2083202224 hasConcept C123057669 @default.
- W2083202224 hasConcept C127313418 @default.
- W2083202224 hasConcept C159985019 @default.
- W2083202224 hasConcept C171250308 @default.