Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083252011> ?p ?o ?g. }
- W2083252011 endingPage "175" @default.
- W2083252011 startingPage "168" @default.
- W2083252011 abstract "Effects of fertilisation and cropland management on soil organic carbon (SOC) dynamics can be assessed best in long-term experiments. Using data from the long-term fertilisation experiment in Puch, Germany (part of the series “Internationale Organische Stickstoff Dauerversuche”, IOSDV), we tested the performance of the Rothamsted Carbon Model 26.3 (RothC). The objectives of this work were: (i) quantify the C-input and the efficiency of SOC stabilisation, (ii) test the performance of different input estimates on predictive power of the RothC and (iii) test implementations of residue quality and C-saturation on model predictions. The experiment is a full-factorial strip design, the factors being “organic amendment” and “level of N-fertiliser”. Each treatment was replicated three times. The crop rotation is silage maize–winter wheat–winter barley. Five levels of the factor “organic amendment” were considered: (i) CON: no organic amendment; (ii) SLU: slurry application (on average 0.8 Mg C ha− 1 year− 1); (iii) FYM: application of farmyard manure (30 to 40 Mg ha− 1 fresh mass every third year to maize, on average 1.0 Mg C ha− 1 year− 1); (iv) STR: straw incorporation after harvest of wheat and barley (depending on straw yield on average 0.7 to 2.2 Mg C ha− 1 year− 1); (v) STSL: slurry application plus straw incorporation (on average 1.1 to 2.4 Mg C ha− 1 year− 1). All treatments (including CON) were combined with five different levels of N-fertilisation (N0 to N4), whereas N0 was nil N application and N4 averaged 177 kg N ha− 1 year− 1. N-rates increased gradually and differed depending on the crop. Starting values for SOC stocks (Mg ha− 1) were measured in 1983 as a mean among N-rates for organic amendment treatments (CON: 42; SLU: 39.8; FYM: 40.5; STR 39.8; STSL: 40.5). SOC stocks (0–25 cm) in 2004 (35.5 to 46.6 Mg C ha− 1) were in the order STSL > FYM = SLU > STR = CON (p ≤ 0.001). However, slightly different starting values indicated a higher loss of SOC after 21 years in the CON (11–14%) compared to the STR treatments (1–10%). Effect of N-rate was not significant. The observed relation between change of SOC and C-input was quadratic (YO = − 13.4 + 7.5x − 0.9x2; R2 = 0.74, p ≤ 0.001), which contrasted the linear relationship predicted by RothC (YP = − 12.9 + 5.5x; R2 = 0.97, p ≤ 0.0001). Serious deviation between observed and predicted relationship occurred above C-inputs of 2.5 Mg C ha− 1 year− 1. Mechanistic explanation (e.g. C-saturation or increased mineralisation by N-fertilisation) for the observation needs further exploration, but implication on regional estimates for C-accumulation for different cropland management scenarios is obvious: potential gain in SOC storage by increasing C-inputs may be overestimated, at least under conditions of the Puch site. Independent model predictions (i.e. no parameter adjustment and independent estimation and measurement of C-input) were successful for treatments without straw incorporation (CON, SLU, FYM). Using a regression between crop yields and crop residue input yielded better results than using a constant belowground-to-aboveground biomass ratio. SOC stocks of treatments STR and STSL were seriously overestimated by the model. Using a higher decomposability of crop residue improved result only marginally and required the change of a standard parameter. Using a simple implementation of C-saturation improved predictions for STR and STSL but failed to simulate dynamics in all other treatments. Overall, our results showed that it is important to recognise that relation between SOC change and C-input is not necessarily linear. However, the RothC model predicted SOC dynamics well at lower input levels. Observation that a regression equation for input estimation is superior to a constant biomass ratio for modelling purposes has to be tested further. An implementation of residue quality or saturation capacity in the RothC model may be promising for a better mechanistic understanding of SOC dynamics. However, this requires careful calibration and will increase the number of parameters to be fitted." @default.
- W2083252011 created "2016-06-24" @default.
- W2083252011 creator A5028714476 @default.
- W2083252011 creator A5034141791 @default.
- W2083252011 creator A5045202773 @default.
- W2083252011 creator A5077899669 @default.
- W2083252011 date "2012-01-01" @default.
- W2083252011 modified "2023-10-09" @default.
- W2083252011 title "Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model" @default.
- W2083252011 cites W1567962836 @default.
- W2083252011 cites W1588050055 @default.
- W2083252011 cites W1965591123 @default.
- W2083252011 cites W1969762033 @default.
- W2083252011 cites W1970840287 @default.
- W2083252011 cites W1973916493 @default.
- W2083252011 cites W1975472118 @default.
- W2083252011 cites W1977372146 @default.
- W2083252011 cites W1980928359 @default.
- W2083252011 cites W1987386510 @default.
- W2083252011 cites W1999499080 @default.
- W2083252011 cites W2002536669 @default.
- W2083252011 cites W2005588808 @default.
- W2083252011 cites W2011376715 @default.
- W2083252011 cites W2013721288 @default.
- W2083252011 cites W2017698924 @default.
- W2083252011 cites W2021232796 @default.
- W2083252011 cites W2039593856 @default.
- W2083252011 cites W2044716830 @default.
- W2083252011 cites W2044788058 @default.
- W2083252011 cites W2051348567 @default.
- W2083252011 cites W2053756232 @default.
- W2083252011 cites W2054897709 @default.
- W2083252011 cites W2056534521 @default.
- W2083252011 cites W2058003803 @default.
- W2083252011 cites W2064219111 @default.
- W2083252011 cites W2064417105 @default.
- W2083252011 cites W2066890642 @default.
- W2083252011 cites W2087883012 @default.
- W2083252011 cites W2090644172 @default.
- W2083252011 cites W2101178087 @default.
- W2083252011 cites W2110406941 @default.
- W2083252011 cites W2123073816 @default.
- W2083252011 cites W2133876813 @default.
- W2083252011 cites W2144189317 @default.
- W2083252011 cites W2145174872 @default.
- W2083252011 cites W2152341875 @default.
- W2083252011 cites W2165835329 @default.
- W2083252011 cites W2169539450 @default.
- W2083252011 cites W2461423835 @default.
- W2083252011 cites W4242518264 @default.
- W2083252011 cites W4255169115 @default.
- W2083252011 doi "https://doi.org/10.1016/j.geoderma.2011.11.005" @default.
- W2083252011 hasPublicationYear "2012" @default.
- W2083252011 type Work @default.
- W2083252011 sameAs 2083252011 @default.
- W2083252011 citedByCount "53" @default.
- W2083252011 countsByYear W20832520112012 @default.
- W2083252011 countsByYear W20832520112013 @default.
- W2083252011 countsByYear W20832520112014 @default.
- W2083252011 countsByYear W20832520112015 @default.
- W2083252011 countsByYear W20832520112016 @default.
- W2083252011 countsByYear W20832520112017 @default.
- W2083252011 countsByYear W20832520112018 @default.
- W2083252011 countsByYear W20832520112019 @default.
- W2083252011 countsByYear W20832520112020 @default.
- W2083252011 countsByYear W20832520112021 @default.
- W2083252011 countsByYear W20832520112022 @default.
- W2083252011 countsByYear W20832520112023 @default.
- W2083252011 crossrefType "journal-article" @default.
- W2083252011 hasAuthorship W2083252011A5028714476 @default.
- W2083252011 hasAuthorship W2083252011A5034141791 @default.
- W2083252011 hasAuthorship W2083252011A5045202773 @default.
- W2083252011 hasAuthorship W2083252011A5077899669 @default.
- W2083252011 hasConcept C107872376 @default.
- W2083252011 hasConcept C118518473 @default.
- W2083252011 hasConcept C137580998 @default.
- W2083252011 hasConcept C140793950 @default.
- W2083252011 hasConcept C158787203 @default.
- W2083252011 hasConcept C159390177 @default.
- W2083252011 hasConcept C159750122 @default.
- W2083252011 hasConcept C175760724 @default.
- W2083252011 hasConcept C17744445 @default.
- W2083252011 hasConcept C183889291 @default.
- W2083252011 hasConcept C185592680 @default.
- W2083252011 hasConcept C18903297 @default.
- W2083252011 hasConcept C199539241 @default.
- W2083252011 hasConcept C2779184190 @default.
- W2083252011 hasConcept C2779587293 @default.
- W2083252011 hasConcept C2780560099 @default.
- W2083252011 hasConcept C2781338088 @default.
- W2083252011 hasConcept C33923547 @default.
- W2083252011 hasConcept C38304854 @default.
- W2083252011 hasConcept C39432304 @default.
- W2083252011 hasConcept C39464130 @default.
- W2083252011 hasConcept C55493867 @default.
- W2083252011 hasConcept C6557445 @default.
- W2083252011 hasConcept C86803240 @default.
- W2083252011 hasConcept C87717796 @default.