Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083310487> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2083310487 endingPage "101" @default.
- W2083310487 startingPage "90" @default.
- W2083310487 abstract "Iran is a country in a dry part of the world and extensively suffers from drought. Drought is a natural, temporary, and iterative phenomenon that is caused by shortage in rainfall, which affects people's health and well-being adversely as well as impacting the society's economy and politics with far-reaching consequences. Information on intensity, duration, and spatial coverage of drought can help decision makers to reduce the vulnerability of the drought-affected areas, and therefore, lessen the risks associated with drought episodes. One of the major challenges of modeling drought (and short-term forecasting) in Iran is unavailability of long-term meteorological data for many parts of the country. Satellite-based remote sensing dataathat are freely availableagive information on vegetation conditions and land cover. In this paper, we constructed artificial neural network to model (and forecast) drought conditions based on satellite imagery. To this end, standardized precipitation index (SPI) was used as a measure of drought severity. A number of features including normalized difference vegetation index (NDVI), vegetation condition index (VCI), and temperature condition index (TCI) were extracted from NOAA-AVHRR images. The model received these features as input and outputted the SPI value (or drought condition). Applying the model to the data of stations for which the precipitation data were available, we showed that it could forecast the drought condition with an accuracy of up to 90 percent. Furthermore, TCI was found to be the best marker of drought conditions among satellite-based features. We also found multilayer perceptron better than radial basis function networks and support vector machines forecasting drought conditions." @default.
- W2083310487 created "2016-06-24" @default.
- W2083310487 creator A5030903468 @default.
- W2083310487 creator A5064300580 @default.
- W2083310487 creator A5065121591 @default.
- W2083310487 creator A5074756910 @default.
- W2083310487 creator A5075851222 @default.
- W2083310487 date "2014-01-01" @default.
- W2083310487 modified "2023-09-27" @default.
- W2083310487 title "Nationwide Prediction of Drought Conditions in Iran Based on Remote Sensing Data" @default.
- W2083310487 cites W116410465 @default.
- W2083310487 cites W1498436455 @default.
- W2083310487 cites W1954146034 @default.
- W2083310487 cites W1982787771 @default.
- W2083310487 cites W1985877944 @default.
- W2083310487 cites W1989279348 @default.
- W2083310487 cites W1989640761 @default.
- W2083310487 cites W1994650774 @default.
- W2083310487 cites W2007196617 @default.
- W2083310487 cites W2008404657 @default.
- W2083310487 cites W2014927013 @default.
- W2083310487 cites W2018977292 @default.
- W2083310487 cites W2021481900 @default.
- W2083310487 cites W2022732179 @default.
- W2083310487 cites W2040228818 @default.
- W2083310487 cites W2042466020 @default.
- W2083310487 cites W2056717940 @default.
- W2083310487 cites W2063623478 @default.
- W2083310487 cites W2066124066 @default.
- W2083310487 cites W2097960263 @default.
- W2083310487 cites W2107599579 @default.
- W2083310487 cites W2108031818 @default.
- W2083310487 cites W2130267841 @default.
- W2083310487 cites W2132375822 @default.
- W2083310487 cites W2133218851 @default.
- W2083310487 cites W2141229083 @default.
- W2083310487 cites W2149214590 @default.
- W2083310487 cites W2155399784 @default.
- W2083310487 cites W2161881124 @default.
- W2083310487 cites W2172136025 @default.
- W2083310487 cites W2397127589 @default.
- W2083310487 cites W3022189034 @default.
- W2083310487 doi "https://doi.org/10.1109/tc.2013.118" @default.
- W2083310487 hasPublicationYear "2014" @default.
- W2083310487 type Work @default.
- W2083310487 sameAs 2083310487 @default.
- W2083310487 citedByCount "26" @default.
- W2083310487 countsByYear W20833104872014 @default.
- W2083310487 countsByYear W20833104872015 @default.
- W2083310487 countsByYear W20833104872016 @default.
- W2083310487 countsByYear W20833104872017 @default.
- W2083310487 countsByYear W20833104872018 @default.
- W2083310487 countsByYear W20833104872019 @default.
- W2083310487 countsByYear W20833104872021 @default.
- W2083310487 countsByYear W20833104872022 @default.
- W2083310487 countsByYear W20833104872023 @default.
- W2083310487 crossrefType "journal-article" @default.
- W2083310487 hasAuthorship W2083310487A5030903468 @default.
- W2083310487 hasAuthorship W2083310487A5064300580 @default.
- W2083310487 hasAuthorship W2083310487A5065121591 @default.
- W2083310487 hasAuthorship W2083310487A5074756910 @default.
- W2083310487 hasAuthorship W2083310487A5075851222 @default.
- W2083310487 hasConcept C153294291 @default.
- W2083310487 hasConcept C205649164 @default.
- W2083310487 hasConcept C39432304 @default.
- W2083310487 hasConcept C41008148 @default.
- W2083310487 hasConcept C62649853 @default.
- W2083310487 hasConceptScore W2083310487C153294291 @default.
- W2083310487 hasConceptScore W2083310487C205649164 @default.
- W2083310487 hasConceptScore W2083310487C39432304 @default.
- W2083310487 hasConceptScore W2083310487C41008148 @default.
- W2083310487 hasConceptScore W2083310487C62649853 @default.
- W2083310487 hasIssue "1" @default.
- W2083310487 hasLocation W20833104871 @default.
- W2083310487 hasOpenAccess W2083310487 @default.
- W2083310487 hasPrimaryLocation W20833104871 @default.
- W2083310487 hasRelatedWork W1975591846 @default.
- W2083310487 hasRelatedWork W2022420161 @default.
- W2083310487 hasRelatedWork W2035062134 @default.
- W2083310487 hasRelatedWork W2037995797 @default.
- W2083310487 hasRelatedWork W2116890486 @default.
- W2083310487 hasRelatedWork W2126095845 @default.
- W2083310487 hasRelatedWork W2276146256 @default.
- W2083310487 hasRelatedWork W2748952813 @default.
- W2083310487 hasRelatedWork W2899084033 @default.
- W2083310487 hasRelatedWork W2936499484 @default.
- W2083310487 hasVolume "63" @default.
- W2083310487 isParatext "false" @default.
- W2083310487 isRetracted "false" @default.
- W2083310487 magId "2083310487" @default.
- W2083310487 workType "article" @default.