Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083368897> ?p ?o ?g. }
- W2083368897 endingPage "1556" @default.
- W2083368897 startingPage "1551" @default.
- W2083368897 abstract "The objective of this study was to elucidate the origin of the nitric oxide-forming reactions from nitrite in the presence of the iron-N-methyl-d-glucamine dithiocarbamate complex ((MGD)2Fe2+). The (MGD)2Fe2+ complex is commonly used in electron paramagnetic resonance (EPR) spectroscopic detection of NO bothin vivo and in vitro. Although it is widely believed that only NO can react with (MGD)2Fe2+ complex to form the (MGD)2Fe2+·NO complex, a recent article reported that the (MGD)2Fe2+ complex can react not only with NO, but also with nitrite to produce the characteristic triplet EPR signal of (MGD)2Fe2+·NO (Hiramoto, K., Tomiyama, S., and Kikugawa, K. (1997) Free Radical Res. 27, 505–509). However, no detailed reaction mechanisms were given. Alternatively, nitrite is considered to be a spontaneous NO donor, especially at acidic pH values (Samouilov, A., Kuppusamy, P., and Zweier, J. L. (1998) Arch Biochem. Biophys. 357, 1–7). However, its production of nitric oxide at physiological pH is unclear. In this report, we demonstrate that the (MGD)2Fe2+ complex and nitrite reacted to form NO as follows: 1) (MGD)2Fe2·NO complex was produced at pH 7.4; 2) concomitantly, the (MGD)3Fe3+ complex, which is the oxidized form of (MGD)2Fe2+, was formed; 3) the rate of formation of the (MGD)2Fe2+·NO complex was a function of the concentration of [Fe2+]2, [MGD], [H+] and [nitrite]. The objective of this study was to elucidate the origin of the nitric oxide-forming reactions from nitrite in the presence of the iron-N-methyl-d-glucamine dithiocarbamate complex ((MGD)2Fe2+). The (MGD)2Fe2+ complex is commonly used in electron paramagnetic resonance (EPR) spectroscopic detection of NO bothin vivo and in vitro. Although it is widely believed that only NO can react with (MGD)2Fe2+ complex to form the (MGD)2Fe2+·NO complex, a recent article reported that the (MGD)2Fe2+ complex can react not only with NO, but also with nitrite to produce the characteristic triplet EPR signal of (MGD)2Fe2+·NO (Hiramoto, K., Tomiyama, S., and Kikugawa, K. (1997) Free Radical Res. 27, 505–509). However, no detailed reaction mechanisms were given. Alternatively, nitrite is considered to be a spontaneous NO donor, especially at acidic pH values (Samouilov, A., Kuppusamy, P., and Zweier, J. L. (1998) Arch Biochem. Biophys. 357, 1–7). However, its production of nitric oxide at physiological pH is unclear. In this report, we demonstrate that the (MGD)2Fe2+ complex and nitrite reacted to form NO as follows: 1) (MGD)2Fe2·NO complex was produced at pH 7.4; 2) concomitantly, the (MGD)3Fe3+ complex, which is the oxidized form of (MGD)2Fe2+, was formed; 3) the rate of formation of the (MGD)2Fe2+·NO complex was a function of the concentration of [Fe2+]2, [MGD], [H+] and [nitrite]. nitric oxide diethyldithiocarbamate N-methyl-d-glucamine dithiocarbamate Nitric oxide (NO)1 has many important physiological roles which include that of a cytotoxic mediator of the immune system, regulation of vasomotor tone in the cardiovascular system, and as a neurotransmitter in the central nervous system (1.Palmer R.M.J. Ferrige A.G. Moncada S. Nature. 1987; 327: 524-526Crossref PubMed Scopus (9260) Google Scholar, 2.Collier J. Vallance P. Trends Pharmacol. Sci. 1989; 10: 427-431Abstract Full Text PDF PubMed Scopus (115) Google Scholar). NO is thought to be identical to the endothelium-derived relaxing factor (1.Palmer R.M.J. Ferrige A.G. Moncada S. Nature. 1987; 327: 524-526Crossref PubMed Scopus (9260) Google Scholar), and its insufficiency is believed to contribute to the pathogenesis of vascular disease such as atherosclerosis, hypertension, and myocardial ischemia. As a result, much attention has been focused on the potential therapeutic ability of nitrovasodilators (e.g. nitroglycerin and nitroprusside) (3.Joseph J. Kalyanaraman B. Hyde J.S. Biochem. Biophys. Res. Commun. 1993; 192: 926-934Crossref PubMed Scopus (134) Google Scholar) and the anti-cancer drug hydroxyurea (4.Jiang J.J. Jordan S.J. Barr D.P. Gunther M.R. Maeda H. Mason R.P. Mol. Pharmacol. 1997; 52: 1081-1086Crossref PubMed Scopus (109) Google Scholar) to release NO.In order to understand the mechanisms by which NO, a diffusable free radical with a short lifetime, mediates various biological processes, accurate methods for its measurement are required. Several methods for the quantitation of NO such as chemiluminescence (1.Palmer R.M.J. Ferrige A.G. Moncada S. Nature. 1987; 327: 524-526Crossref PubMed Scopus (9260) Google Scholar), methemoglobin formation (5.Ignarro L.J. Buga G.M. Wood K.S. Byrns R.E. Chaudhuri G. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 9265-9269Crossref PubMed Scopus (4299) Google Scholar), and electron paramagnetic resonance (EPR) spectroscopy of nitrosyl-metal complexes (6.Greenberg S.S. Wilcox D.E. Rubanyi G.M. Circ. Res. 1990; 67: 1446-1452Crossref PubMed Scopus (57) Google Scholar) have been developed (7.Archer S. FASEB J. 1993; 7: 349-360Crossref PubMed Scopus (851) Google Scholar). Production of NO can also be indirectly assessed by measuring the nitric oxide oxidation product, nitrite, with the Griess reaction.EPR spectroscopy is the only specific general technique available for the detection and measurement of radical production, but has severe quantum mechanical limitations for diatomic molecules. EPR methods have been developed which stabilize NO as a polyatomic adduct using endogenous and exogenous spin traps (8.Korth H.-G. Sustmann R. Lommes P. Paul T. Ernst A. de Groot H. Hughes L. Ingold K.U. J. Am. Chem. Soc. 1994; 116: 2767-2777Crossref Scopus (86) Google Scholar, 9.Arroyo C.M. Kohno M. Free Radical Res. Commun. 1991; 14: 145-155Crossref PubMed Scopus (67) Google Scholar, 10.Akaike T. Yoshida M. Miyamoto Y. Sato K. Kohno M. Sasamoto K. Miyazaki K. Ueda S. Maeda H. Biochemistry. 1993; 32: 827-832Crossref PubMed Scopus (550) Google Scholar, 11.Woldman Y.Yu. Khramtsov V.V. Grigor'ev I.A. Kiriljuk I.A. Utepbergenov D.I. Biochem. Biophys. Res. Commun. 1994; 202: 195-203Crossref PubMed Scopus (67) Google Scholar, 12.Mordvintcev P. Mülsch A. Busse R. Vanin A. Anal. Biochem. 1991; 199: 142-146Crossref PubMed Scopus (161) Google Scholar, 13.Obolenskaya M.Yu. Vanin A.F. Mordvintcev P.I. Mülsch A. Decker K. Biochem. Biophys. Res. Commun. 1994; 202: 571-576Crossref PubMed Scopus (69) Google Scholar, 14.Komarov A. Mattson D. Jones M.M. Singh P.K. Lai C.-S. Biochem. Biophys. Res. Commun. 1993; 195: 1191-1198Crossref PubMed Scopus (178) Google Scholar). Conventional nitrone- and nitroso-based spin traps are not capable of trapping NO as stable radical adducts, and nitromethane is an effective spin trap only at very alkaline pH values (15.Reszka K.J. Bilski P. Chignell C.F. J. Am. Chem. Soc. 1996; 118: 8719-8720Crossref Scopus (23) Google Scholar). The diethyldithiocarbamate (DETC) ferrous complex is a commonly used spin trap for NO (16.Vedernikov Y.P. Mordvintcev P.I. Malenkova I.V. Vanin A.F. Eur. J. Pharmacol. 1992; 212: 125-128Crossref PubMed Scopus (36) Google Scholar), and the resultant (DETC)2Fe2+·NO complex has a characteristic triplet EPR signal. Although the (DETC)2Fe2+complex has been widely used to trap NO from cells and tissues (12.Mordvintcev P. Mülsch A. Busse R. Vanin A. Anal. Biochem. 1991; 199: 142-146Crossref PubMed Scopus (161) Google Scholar,13.Obolenskaya M.Yu. Vanin A.F. Mordvintcev P.I. Mülsch A. Decker K. Biochem. Biophys. Res. Commun. 1994; 202: 571-576Crossref PubMed Scopus (69) Google Scholar), quantitation of NO using (DETC)2Fe2+requires complicated procedures to overcome its low solubility in water. Recently, N-methyl-d-glucamine dithiocarbamate (MGD) has been used to overcome the poor solubility of (DETC)2Fe2+ (14.Komarov A. Mattson D. Jones M.M. Singh P.K. Lai C.-S. Biochem. Biophys. Res. Commun. 1993; 195: 1191-1198Crossref PubMed Scopus (178) Google Scholar). The (MGD)2Fe2+ complex (Fig.1) is water-soluble (17.Shinobu L.A. Jones S.G. Jones M.M. Acta Pharmacol. Toxicol. 1984; 54: 189-194Crossref PubMed Scopus (228) Google Scholar) and forms a characteristic triplet EPR spectrum after trapping NO. NO is produced by the nitric oxide synthase-catalyzed oxidation ofl-arginine. Ultimately, NO is oxidized to nitrite and nitrate. Although the nitrite is generally believed to be a fairly stable product of NO oxidation, Samouilov et al. (18.Samouilov A. Kuppusamy P. Zweier J.L. Arch. Biochem. Biophys. 1998; 357: 1-7Crossref PubMed Scopus (138) Google Scholar) demonstrated an enzyme-independent pathway of NO generation from nitrite at acidic conditions (pH ≤ 7) by EPR and chemiluminescence techniques. They also indicated that the conversion rate of nitrite to NO was too slow to be directly measured at physiological pH (18.Samouilov A. Kuppusamy P. Zweier J.L. Arch. Biochem. Biophys. 1998; 357: 1-7Crossref PubMed Scopus (138) Google Scholar). However, Hiramoto et al. (19.Hiramoto K. Tomiyama S. Kikugawa K. Free Rad. Res. 1997; 27: 505-509Crossref PubMed Scopus (21) Google Scholar) reported that the coexistence of Fe2+-dithiocarbamate complexes and nitrite produced a triplet EPR spectrum which corresponded to that of the dithiocarbamate-Fe2+-NO complex even at physiological pH.Although it is widely believed that Fe2+-dithiocarbamate complexes specifically react with NO to form dithiocarbamate-Fe2+-NO complex, its production from nitrite by (MGD)2Fe2+ may lead to misinterpretation regarding the actual presence of NO. Nitrite in biological systems originates as an oxidation product of endogenous NO, as a food component (20.Forman D. Al-Dabbagh S. Doll R. Nature. 1985; 313: 620-625Crossref PubMed Scopus (255) Google Scholar), and as the reduction product of nitrate by facultative anaerobic bacteria (21.Sasaki T. Matano K. J. Food Hyg. Soc. Jpn. 1979; 20: 363-369Crossref Scopus (30) Google Scholar, 22.Ishiwata H. Tanimura A. Ishidate M. J. Food Hyg. Soc. Jpn. 1975; 16: 89-92Crossref Scopus (43) Google Scholar, 23.Tannenbaum S.R. Weisman M. Fett D. Food Cosmet. Toxicol. 1976; 14: 549-552Crossref PubMed Scopus (310) Google Scholar). Therefore, it is important to investigate any reaction between nitrite and the Fe2+-dithiocarbamate complex at physiological pH. In this study, EPR spectroscopy was utilized to investigate whether (MGD)2Fe2+complex produces (MGD)2Fe2+·NO in the presence of nitrite under anaerobic conditions.DISCUSSIONIron dithiocarbamate complexes such as DETC (12.Mordvintcev P. Mülsch A. Busse R. Vanin A. Anal. Biochem. 1991; 199: 142-146Crossref PubMed Scopus (161) Google Scholar), MGD (14.Komarov A. Mattson D. Jones M.M. Singh P.K. Lai C.-S. Biochem. Biophys. Res. Commun. 1993; 195: 1191-1198Crossref PubMed Scopus (178) Google Scholar), proline dithiocarbamate (28.Paschenko S.V. Khramtsov V.V. Skatchkov M.P. Plyusnin V.F. Bassenge E. Biochem. Biophys. Res. Commun. 1996; 225: 577-584Crossref PubMed Scopus (46) Google Scholar), and N-(dithiocarboxy)sarcosine (29.Yoshimura T. Yokoyama H. Fujii S. Takayama F. Oikawa K. Kamada H. Nat. Biotechnol. 1996; 14: 992-994Crossref PubMed Scopus (209) Google Scholar) have been used as spin-trapping agents for NO. Co-existence of these iron complexes and NO leads to an intense three-line EPR signal at room temperature. The (DETC)2Fe2+·NO complex is very hydrophobic, which is a limitation in its use in vivo (13.Obolenskaya M.Yu. Vanin A.F. Mordvintcev P.I. Mülsch A. Decker K. Biochem. Biophys. Res. Commun. 1994; 202: 571-576Crossref PubMed Scopus (69) Google Scholar, 30.Kubrina L.N. Mordvintcev P.I. Vanin A.F. Biull. Eksp. Biol. Med. 1989; 107: 31-33Crossref PubMed Scopus (2) Google Scholar, 31.Kubrina L.N. Caldwell W.S. Mordvintcev P.I. Malenkova I.V. Vanin A.F. Biochim. Biophys. Acta. 1992; 1099: 233-237Crossref PubMed Scopus (103) Google Scholar, 32.Voevodskaya N.V. Vanin A.F. Biochem. Biophys. Res. Commun. 1992; 186: 1423-1428Crossref PubMed Scopus (60) Google Scholar, 33.Kubrina L.N. Mikoyan V.D. Mordvintcev P.I. Vanin A.F. Biochim. Biophys. Acta. 1993; 1176: 240-244Crossref PubMed Scopus (56) Google Scholar, 34.Vanin A.F. Mordvintcev P.I. Hauschildt S. Mülsch A. Biochim. Biophys. Acta. 1993; 1177: 37-42Crossref PubMed Scopus (77) Google Scholar, 35.Mikoyan V.D. Kubrina L.N. Vanin A.F. Biochem. Mol. Biol. Int. 1994; 32: 1157-1160PubMed Google Scholar, 36.Mikoian V.D. Voevodskaia N.V. Kubrina L.N. Malenkova I.V. Vanin A.F. Biokhimiia. 1994; 59: 732-738PubMed Google Scholar, 37.Sato S. Tominaga T. Ohnishi T. Ohnishi S.T. Brain Res. 1994; 647: 91-96Crossref PubMed Scopus (78) Google Scholar, 38.Mikoian V.D. Kubrina L.N. Vanin A.F. Biofizika. 1994; 39: 915-918PubMed Google Scholar, 39.Mikoian V.D. Kubrina L.N. Vanin A.F. Biofizika. 1994; 39: 919-922PubMed Google Scholar, 40.Tominaga T. Sato S. Ohnishi T. Ohnishi S.T. J. Cereb. Blood Flow Metab. 1994; 14: 715-722Crossref PubMed Scopus (82) Google Scholar, 41.Mülsch A. Mordvintcev P. Bassenge E. Jung F. Clement B. Busse R. Circulation. 1995; 92: 1876-1882Crossref PubMed Scopus (73) Google Scholar, 42.Mikoyan V.D. Voevodskaya N.V. Kubrina L.N. Malenkova I.V. Vanin A.F. Biochim. Biophys. Acta. 1995; 1269: 19-24Crossref PubMed Scopus (30) Google Scholar, 43.Mülsch A. Bara A. Mordvintcev P. Vanin A. Busse R. Br. J. Pharmacol. 1995; 116: 2743-2749Crossref PubMed Scopus (41) Google Scholar, 44.Hamada Y. Ikata T. Katoh S. Tsuchiya K. Niwa M. Tsutsumishita Y. Fukuzawa K. Free Radical Biol. Med. 1996; 20: 1-9Crossref PubMed Scopus (118) Google Scholar, 45.Doi K. Akaike T. Horie H. Noguchi Y. Fujii S. Beppu T. Ogawa M. Maeda H. Cancer. 1996; 77: 1598-1604Crossref PubMed Scopus (0) Google Scholar, 46.Wallis G. Brackett D. Lerner M. Kotake Y. Bolli R. McCay P.B. Shock. 1996; 6: 274-278Crossref PubMed Scopus (28) Google Scholar, 47.Laursen J.B. Mülsch A. Boesgaard S. Mordvintcev P. Trautner S. Gruhn N. Nielsen-Kudsk J.E. Busse R. Aldershvile J. Circulation. 1996; 94: 2241-2247Crossref PubMed Scopus (62) Google Scholar, 48.Mikoian V.D. Kubrina L.N. Serezhenkov V.A. Burgova E.N. Stukan R.A. Vanin A.F. Biofizika. 1997; 42: 490-501PubMed Google Scholar, 49.Mikoyan V.D. Kubrina L.N. Serezhenkov V.A. Stukan R.A. Vanin A.F. Biochim. Biophys. Acta. 1997; 1336: 225-234Crossref PubMed Scopus (82) Google Scholar, 50.Komarov A.M. Mak I.T. Weglicki W.B. Biochim. Biophys. Acta. 1997; 1361: 229-234Crossref PubMed Scopus (28) Google Scholar, 51.Shen J. Wang J. Zhao B. Hou J. Gao T. Xin W. Biochim. Biophys. Acta. 1998; 1406: 228-236Crossref PubMed Scopus (70) Google Scholar, 52.Suzuki Y. Fujii S. Numagami Y. Tominaga T. Yoshimoto T. Yoshimura T. Free Radical Res. 1998; 28: 293-299Crossref PubMed Scopus (40) Google Scholar, 53.James P.E. Liu K.J. Swartz H.M. Adv. Exp. Med. Biol. 1998; 454: 181-187Crossref PubMed Scopus (11) Google Scholar, 54.Shutenko Z. Henry Y. Pinard E. Seylaz J. Potier P. Berthet F. Girard P. Sercombe R. Biochem. Pharmacol. 1999; 57: 199-208Crossref PubMed Scopus (156) Google Scholar). Recently, the application of hydrophilic iron dithiocarbamate complexes such as MGD-Fe,N-(dithiocarboxy)sarcosine-Fe, and proline dithiocarbamate-Fe for NO detection in vivo has been investigated by several researchers (14.Komarov A. Mattson D. Jones M.M. Singh P.K. Lai C.-S. Biochem. Biophys. Res. Commun. 1993; 195: 1191-1198Crossref PubMed Scopus (178) Google Scholar, 29.Yoshimura T. Yokoyama H. Fujii S. Takayama F. Oikawa K. Kamada H. Nat. Biotechnol. 1996; 14: 992-994Crossref PubMed Scopus (209) Google Scholar, 45.Doi K. Akaike T. Horie H. Noguchi Y. Fujii S. Beppu T. Ogawa M. Maeda H. Cancer. 1996; 77: 1598-1604Crossref PubMed Scopus (0) Google Scholar, 48.Mikoian V.D. Kubrina L.N. Serezhenkov V.A. Burgova E.N. Stukan R.A. Vanin A.F. Biofizika. 1997; 42: 490-501PubMed Google Scholar, 49.Mikoyan V.D. Kubrina L.N. Serezhenkov V.A. Stukan R.A. Vanin A.F. Biochim. Biophys. Acta. 1997; 1336: 225-234Crossref PubMed Scopus (82) Google Scholar, 50.Komarov A.M. Mak I.T. Weglicki W.B. Biochim. Biophys. Acta. 1997; 1361: 229-234Crossref PubMed Scopus (28) Google Scholar, 55.Lai C.-S. Komarov A.M. FEBS Lett. 1994; 345: 120-124Crossref PubMed Scopus (163) Google Scholar, 56.Komarov A.M. Lai C.-S. Biochim. Biophys. Acta. 1995; 1272: 29-36Crossref PubMed Scopus (109) Google Scholar, 57.Zweier J.L. Wang P. Kuppusamy P. J. Biol. Chem. 1995; 270: 304-307Abstract Full Text Full Text PDF PubMed Scopus (225) Google Scholar, 58.Reinke L.A. Moore D.R. Kotake Y. Anal. Biochem. 1996; 243: 8-14Crossref PubMed Scopus (21) Google Scholar, 59.Wang P. Zweier J.L. J. Biol. Chem. 1996; 271: 29223-29230Abstract Full Text Full Text PDF PubMed Scopus (519) Google Scholar, 60.Miyajima T. Kotake Y. Free Radical Biol. Med. 1997; 22: 463-470Crossref PubMed Scopus (51) Google Scholar, 61.Fujii H. Koscielniak J. Berliner L.J. Magn. Reson. Med. 1997; 38: 565-568Crossref PubMed Scopus (51) Google Scholar, 62.Fujii H. Berliner L.J. Phys. Med. Biol. 1998; 43: 1949-1956Crossref PubMed Scopus (14) Google Scholar, 63.Lecour S. Maupoil V. Siri O. Tabard A. Rochette L. J. Cardiovasc. Pharmacol. 1999; 33: 78-85Crossref PubMed Scopus (23) Google Scholar, 64.Pou S. Tsai P. Porasuphatana S. Halpern H.J. Chandramouli G.V.R. Barth E.D. Rosen G.M. Biochim. Biophys. Acta. 1999; 1427: 216-226Crossref PubMed Scopus (57) Google Scholar, 65.Kotake Y. Moore D.R. Sang H. Reinke L.A. Nitric Oxide. 1999; 3: 114-122Crossref PubMed Scopus (17) Google Scholar, 66.Fujii S. Suzuki Y. Yoshimura T. Kamada H. Am. J. Physiol. 1998; 274: G857-G862PubMed Google Scholar).Nitrite in biological systems is known to be derived mainly from diet and as the oxidation product of NO, which is synthesized by nitric oxide synthases (NOS) from l-arginine. In 1997, Hiramotoet al. (19.Hiramoto K. Tomiyama S. Kikugawa K. Free Rad. Res. 1997; 27: 505-509Crossref PubMed Scopus (21) Google Scholar) reported the appearance of the EPR spectrum of the dithiocarbamate-Fe2+-NO radical adduct in the presence of nitrite after prolonged incubation. If this were true, it would require a careful interpretation of biological data because the formation of the dithiocarbamate-Fe2+-NO complex would not always indicate the systemic production of NO, but could also detect systemic nitrite.However, the mechanisms for the formation of dithiocarbamate-iron-NO complex from dithiocarbamate-iron complex and nitrite have not been thoroughly investigated. In the present investigation, we explore the reaction mechanisms for the formation of the (MGD)2Fe2+·NO complex from nitrite and the water soluble dithiocarbamate-iron complex, (MGD)2Fe2+. As determined with the NO-electrode (Fig. 2), nitrite can produce NO at acidic pH because acidified nitrite can undergo disproportionation to produce NO (67.Williams D.L.H. Nitrosation. Cambridge University Press, New York1988Google Scholar), 3NO2−+2H+⇌2NO+NO3−+H2OEquation 1 The rate of NO production from 1 mm nitrite at pH 4.0 was calculated to be 1.3 × 10−7m/s, which was in good agreement with the literature value (1.7 × 10−7m/s) (18.Samouilov A. Kuppusamy P. Zweier J.L. Arch. Biochem. Biophys. 1998; 357: 1-7Crossref PubMed Scopus (138) Google Scholar). Although no NO was detected with an NO-electrode at neutral pH, the triplet EPR spectrum of the (MGD)2Fe2+·NO complex was generated with time (Fig. 3). The rate for the production of NO from nitrite at pH 7.4 was calculated to be 4.1 × 10−8m/s utilizing EPR quantitation of the rate of formation of (MGD)2Fe2+·NO as a measure of the rate of NO formation. However, if all NO were generated by spontaneous decomposition of nitrite via Equation 1, the rate of NO production at pH 7.4 would be 6.9 × 10−11m/s (18.Samouilov A. Kuppusamy P. Zweier J.L. Arch. Biochem. Biophys. 1998; 357: 1-7Crossref PubMed Scopus (138) Google Scholar). This value was 1000 times less than the observed rate of NO formation. This difference clearly indicated that another NO generation pathway must exist at neutral pH in the presence of the (MGD)2Fe2+ complex and nitrite.Next, we investigated the individual components of the (MGD)2Fe2+ complex for their effect on the generation of NO from nitrite. As shown in Figs. 4, 5, and 6, the rate of NO production was first-order in the concentration of nitrite, MGD, and hydrogen ion, respectively. However, it was second-order in iron concentration (Fig. 7).When Fe2+ is added to MGD, the (MGD)2Fe2+ complex is formed under anaerobic conditions, Fe2++2MGD→(MGD) 2Fe2+Equation 2 When nitrite is introduced into the solution containing the (MGD)2Fe2+ complex at neutral pH, (MGD)3Fe3+, which is an oxidized form of (MGD)2Fe2+, appears (Fig. 8). We propose that (MGD)2Fe2+ reacts with nitrite, possibly as a transient Fe3+-nitric oxide complex (68.Yonetani T. Yamamoto H. Erman J.E. Leigh Jr., J.S. Reed G.H. J. Biol. Chem. 1972; 247: 2447-2455Abstract Full Text PDF PubMed Google Scholar), and then oxidizes (MGD)2Fe2+ to (MGD)3Fe3+, (MGD) 2Fe2++NO2−→H+MGD (MGD) 3Fe3+·NO+OH−Equation 3 The ferric-NO complex, upon reduction by excess (MGD)2Fe2+, will form the (MGD)2Fe2+·NO complex, (MGD) 3Fe3+·NO+(MGD) 2Fe2+ Equation 4 →(MGD) 2Fe2+·NO+(MGD) 3Fe3+If the reduction of (MGD)3Fe3+ is the rate-limiting step, then the net reaction between nitrite and (MGD)2Fe2+ complex can be expressed by adding Equations 3 and 4, 2 (MGD) 2Fe2++NO2−+MGD+H+→Equation 5 (MGD) 3Fe3++(MGD) 2Fe2+·NO+OH−Then, the rate of (MGD)2Fe2+·NO complex formation (v) is expressed as, v=k·[(MGD) 2Fe2+] 2·[NO2−]·[MGD]·[H+]Equation 6 The (MGD)2Fe2+ complex concentration is proportional to iron (Equation 2) because MGD is present in excess (more than 5 times the [Fe2+]). Accordingly, the rate law of Equation 6 accounts for the results of Figs. Figure 4, Figure 5, Figure 6, Figure 7.These results demonstrate that: 1) the reaction of nitrite and (MGD)2Fe2+ complex can produce (MGD)2Fe2+·NO complex via the reduction of nitrite by the (MGD)2Fe2+ complex; and 2) the rate for the formation of (MGD)2Fe2+·NO complex is a function of [NO2−], [MGD], [H+], and the square of [Fe2+]. On the basis of these results, we propose a mechanism for (MGD)2Fe2+−NO complex production from nitrite under anaerobic conditions (SchemeFS1).Figure FS1Proposed mechanism for the generation of the ( MGD )2Fe2+· NO complex from nitrite.View Large Image Figure ViewerDownload Hi-res image Download (PPT)The plasma nitrite concentration was reported to be as high as 100 μm by the Griess method after lipopolysaccharide administration in rats (69.Kamisaki Y. Wada K. Ataka M. Yamada Y. Nakamoto K. Ashida K. Kishimoto Y. Biochem. Biophys. Acta. 1997; 1362: 24-28Crossref PubMed Scopus (47) Google Scholar). The concentration of (MGD)2Fe2+ complex in the blood of an animal during the quantitation of NO is initially estimated to be 0.01–5.71 mm (14.Komarov A. Mattson D. Jones M.M. Singh P.K. Lai C.-S. Biochem. Biophys. Res. Commun. 1993; 195: 1191-1198Crossref PubMed Scopus (178) Google Scholar, 49.Mikoyan V.D. Kubrina L.N. Serezhenkov V.A. Stukan R.A. Vanin A.F. Biochim. Biophys. Acta. 1997; 1336: 225-234Crossref PubMed Scopus (82) Google Scholar, 50.Komarov A.M. Mak I.T. Weglicki W.B. Biochim. Biophys. Acta. 1997; 1361: 229-234Crossref PubMed Scopus (28) Google Scholar, 55.Lai C.-S. Komarov A.M. FEBS Lett. 1994; 345: 120-124Crossref PubMed Scopus (163) Google Scholar, 61.Fujii H. Koscielniak J. Berliner L.J. Magn. Reson. Med. 1997; 38: 565-568Crossref PubMed Scopus (51) Google Scholar, 62.Fujii H. Berliner L.J. Phys. Med. Biol. 1998; 43: 1949-1956Crossref PubMed Scopus (14) Google Scholar, 63.Lecour S. Maupoil V. Siri O. Tabard A. Rochette L. J. Cardiovasc. Pharmacol. 1999; 33: 78-85Crossref PubMed Scopus (23) Google Scholar). As shown in Fig.3 B, the (MGD)2Fe2+·NO EPR spectra increased with time in the presence of 100 μm nitrite and 0.5 mm (MGD)2Fe2+ complex. This data clearly demonstrates that the observed (MGD)2Fe2+·NO EPR spectrum does not necessarily indicate genuine NO production, but can also detect nitrite when the (MGD)2Fe2+ complex is introduced into an animal treated with the endotoxin depending on the local nitrite and Fe2+ (MGD)2 concentrations.We have previously demonstrated that under aerobic conditions, (MGD)2Fe2+ rapidly air oxidizes to form reactive oxygen species capable of oxidizing some nitrogen-containing compounds to nitric oxide (Table I) (27.Tsuchiya K. Jiang J.J. Yoshizumi M. Tamaki T. Houchi H. Minakuchi K. Fukuzawa K. Mason R.P. Free Radical Biol. & Med. 1999; 27: 347-355Crossref PubMed Scopus (42) Google Scholar). We have now demonstrated that under anaerobic conditions, (MGD)2Fe2+ reduces nitrite to form (MGD)2Fe2+·NO at physiological pH values.In vivo, these two reactions will compete with each other. Both of these reactions will also compete with the trapping of authentic NO by (MGD)2Fe2+. Which of these reactions will dominate in vivo will depend, in large measure, on the relative concentrations of molecular oxygen, nitrite, and NO ([O2] ≥ [NO2−] ≫ [NO]) as well as the various reaction rates of (MGD)2Fe2+ (Table I).In summary, the development of the (MGD)2Fe2+·NO complex from biological samples containing nitrite does not necessarily indicate the presence of genuine NO. Special attention to this fact is needed to correctly interpret results obtained by the use of the (MGD)2Fe2+ complex for the detection of NO from nitrite-containing samples. If all nitrite originates from nitric oxide, then the biological interpretations of nitrite-dependent (MGD)2Fe2+·NO complex formation will not change except for the time course, which may be artificially extended. On the other hand, if diet is the source of nitrite, then even more serious misinterpretations of biological significance may result. In any case, the formation of the (MGD)2Fe2+·NO complex cannot uncritically be taken as evidence for the presence of NO in biological systems. Nitric oxide (NO)1 has many important physiological roles which include that of a cytotoxic mediator of the immune system, regulation of vasomotor tone in the cardiovascular system, and as a neurotransmitter in the central nervous system (1.Palmer R.M.J. Ferrige A.G. Moncada S. Nature. 1987; 327: 524-526Crossref PubMed Scopus (9260) Google Scholar, 2.Collier J. Vallance P. Trends Pharmacol. Sci. 1989; 10: 427-431Abstract Full Text PDF PubMed Scopus (115) Google Scholar). NO is thought to be identical to the endothelium-derived relaxing factor (1.Palmer R.M.J. Ferrige A.G. Moncada S. Nature. 1987; 327: 524-526Crossref PubMed Scopus (9260) Google Scholar), and its insufficiency is believed to contribute to the pathogenesis of vascular disease such as atherosclerosis, hypertension, and myocardial ischemia. As a result, much attention has been focused on the potential therapeutic ability of nitrovasodilators (e.g. nitroglycerin and nitroprusside) (3.Joseph J. Kalyanaraman B. Hyde J.S. Biochem. Biophys. Res. Commun. 1993; 192: 926-934Crossref PubMed Scopus (134) Google Scholar) and the anti-cancer drug hydroxyurea (4.Jiang J.J. Jordan S.J. Barr D.P. Gunther M.R. Maeda H. Mason R.P. Mol. Pharmacol. 1997; 52: 1081-1086Crossref PubMed Scopus (109) Google Scholar) to release NO. In order to understand the mechanisms by which NO, a diffusable free radical with a short lifetime, mediates various biological processes, accurate methods for its measurement are required. Several methods for the quantitation of NO such as chemiluminescence (1.Palmer R.M.J. Ferrige A.G. Moncada S. Nature. 1987; 327: 524-526Crossref PubMed Scopus (9260) Google Scholar), methemoglobin formation (5.Ignarro L.J. Buga G.M. Wood K.S. Byrns R.E. Chaudhuri G. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 9265-9269Crossref PubMed Scopus (4299) Google Scholar), and electron paramagnetic resonance (EPR) spectroscopy of nitrosyl-metal complexes (6.Greenberg S.S. Wilcox D.E. Rubanyi G.M. Circ. Res. 1990; 67: 1446-1452Crossref PubMed Scopus (57) Google Scholar) have been developed (7.Archer S. FASEB J. 1993; 7: 349-360Crossref PubMed Scopus (851) Google Scholar). Production of NO can also be indirectly assessed by measuring the nitric oxide oxidation product, nitrite, with the Griess reaction. EPR spectroscopy is the only specific general technique available for the detection and measurement of radical production, but has severe quantum mechanical limitations for diatomic molecules. EPR methods have been developed which stabilize NO as a polyatomic adduct using endogenous and exogenous spin traps (8.Korth H.-G. Sustmann R. Lommes P. Paul T. Ernst A. de Groot H. Hughes L. Ingold K.U. J. Am. Chem. Soc. 1994; 116: 2767-2777Crossref Scopus (86) Google Scholar, 9.Arroyo C.M. Kohno M. Free Radical Res. Commun. 1991; 14: 145-155Crossref PubMed Scopus (67) Google Scholar, 10.Akaike T. Yoshida M. Miyamoto Y. Sato K. Kohno M. Sasamoto K. Miyazaki K. Ueda S. Maeda H. Biochemistry. 1993; 32: 827-832Crossref PubMed Scopus (550) Google Scholar, 11.Woldman Y.Yu. Khramtsov V.V. Grigor'ev I.A. Kiriljuk I.A. Utepbergenov D.I. Biochem. Biophys. Res. Commun. 1994; 202: 195-203Crossref PubMed Scopus (67) Google Scholar, 12.Mordvintcev P. Mülsch A. Busse R. Vanin A. Anal. Biochem. 1991; 199: 142-146Crossref PubMed Scopus (161) Google Scholar, 13.Obolenskaya M.Yu. Vanin A.F. Mordvintcev P.I. Mülsch A. Decker K. Biochem. Biophys. Res. Commun. 1994; 202: 571-576Crossref PubMed Scopus (69) Google Scholar, 14.Komarov A. Mattson D. Jones M.M. Singh P.K. Lai C.-S. Biochem. Biophys. Res. Commun. 1993; 195: 1191-1198Crossref PubMed Scopus (178) Google Scholar). Conventional nitrone- and nitroso-based spin traps are not capable of trapping NO as stable radical adducts, and nitromethane is an effective spin trap only at very alkaline pH values (15.Reszka K.J. Bilski P. Chignell C.F. J. Am. Chem. Soc. 1996; 118: 8719-8720Crossref Scopus (23) Google Scholar). The diethyldithiocarbamate (DETC) ferrous complex is a commonly used spin trap for NO (16.Vedernikov Y.P. Mordvintcev P.I. Malenkova" @default.
- W2083368897 created "2016-06-24" @default.
- W2083368897 creator A5015414029 @default.
- W2083368897 creator A5022973444 @default.
- W2083368897 creator A5055853748 @default.
- W2083368897 creator A5081167835 @default.
- W2083368897 date "2000-01-01" @default.
- W2083368897 modified "2023-10-04" @default.
- W2083368897 title "Nitric Oxide-forming Reaction between the Iron-N-Methyl-d-glucamine Dithiocarbamate Complex and Nitrite" @default.
- W2083368897 cites W1493899800 @default.
- W2083368897 cites W15153607 @default.
- W2083368897 cites W1574835894 @default.
- W2083368897 cites W1947666932 @default.
- W2083368897 cites W1980504146 @default.
- W2083368897 cites W1985371772 @default.
- W2083368897 cites W1985486405 @default.
- W2083368897 cites W1987166207 @default.
- W2083368897 cites W1987389448 @default.
- W2083368897 cites W1990527302 @default.
- W2083368897 cites W1991384716 @default.
- W2083368897 cites W1991984561 @default.
- W2083368897 cites W1994976436 @default.
- W2083368897 cites W1997953323 @default.
- W2083368897 cites W2003346387 @default.
- W2083368897 cites W2006520391 @default.
- W2083368897 cites W2007737411 @default.
- W2083368897 cites W2008862844 @default.
- W2083368897 cites W2009272954 @default.
- W2083368897 cites W2011095668 @default.
- W2083368897 cites W2013446014 @default.
- W2083368897 cites W2014514055 @default.
- W2083368897 cites W2015108452 @default.
- W2083368897 cites W2015447656 @default.
- W2083368897 cites W2029067920 @default.
- W2083368897 cites W2030942556 @default.
- W2083368897 cites W2031609968 @default.
- W2083368897 cites W2035929028 @default.
- W2083368897 cites W2039831515 @default.
- W2083368897 cites W2041385810 @default.
- W2083368897 cites W2042358124 @default.
- W2083368897 cites W2050298215 @default.
- W2083368897 cites W2053559929 @default.
- W2083368897 cites W2059989483 @default.
- W2083368897 cites W2062316787 @default.
- W2083368897 cites W2067590620 @default.
- W2083368897 cites W2067880894 @default.
- W2083368897 cites W2069347285 @default.
- W2083368897 cites W2070105204 @default.
- W2083368897 cites W2076043812 @default.
- W2083368897 cites W2078259385 @default.
- W2083368897 cites W2080643266 @default.
- W2083368897 cites W2081571747 @default.
- W2083368897 cites W2081646807 @default.
- W2083368897 cites W2085012939 @default.
- W2083368897 cites W2092145002 @default.
- W2083368897 cites W2092739580 @default.
- W2083368897 cites W2121121536 @default.
- W2083368897 cites W2121377463 @default.
- W2083368897 cites W2122290831 @default.
- W2083368897 cites W2133854620 @default.
- W2083368897 cites W2147025800 @default.
- W2083368897 cites W2152046668 @default.
- W2083368897 cites W2160969790 @default.
- W2083368897 cites W2171351423 @default.
- W2083368897 cites W2326282712 @default.
- W2083368897 cites W2330632781 @default.
- W2083368897 cites W2951431397 @default.
- W2083368897 cites W350476820 @default.
- W2083368897 cites W4253874881 @default.
- W2083368897 doi "https://doi.org/10.1074/jbc.275.3.1551" @default.
- W2083368897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10636843" @default.
- W2083368897 hasPublicationYear "2000" @default.
- W2083368897 type Work @default.
- W2083368897 sameAs 2083368897 @default.
- W2083368897 citedByCount "73" @default.
- W2083368897 countsByYear W20833688972012 @default.
- W2083368897 countsByYear W20833688972013 @default.
- W2083368897 countsByYear W20833688972014 @default.
- W2083368897 countsByYear W20833688972016 @default.
- W2083368897 countsByYear W20833688972018 @default.
- W2083368897 countsByYear W20833688972019 @default.
- W2083368897 countsByYear W20833688972020 @default.
- W2083368897 countsByYear W20833688972021 @default.
- W2083368897 countsByYear W20833688972022 @default.
- W2083368897 crossrefType "journal-article" @default.
- W2083368897 hasAuthorship W2083368897A5015414029 @default.
- W2083368897 hasAuthorship W2083368897A5022973444 @default.
- W2083368897 hasAuthorship W2083368897A5055853748 @default.
- W2083368897 hasAuthorship W2083368897A5081167835 @default.
- W2083368897 hasBestOaLocation W20833688971 @default.
- W2083368897 hasConcept C13965031 @default.
- W2083368897 hasConcept C155647269 @default.
- W2083368897 hasConcept C178790620 @default.
- W2083368897 hasConcept C179104552 @default.
- W2083368897 hasConcept C185592680 @default.
- W2083368897 hasConcept C2776179834 @default.
- W2083368897 hasConcept C2776384668 @default.
- W2083368897 hasConcept C2777545050 @default.