Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083412062> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2083412062 abstract "Advances in biomedical technology and research have resulted in a large number of research findings, which are primarily published in unstructured text such as journal articles. Text mining techniques have been thus employed to extract knowledge from such data. In this article we focus on the task of identifying and extracting relations between bio-entities such as green tea and breast cancer. Unlike previous work that employs heuristics such as co-occurrence patterns and handcrafted syntactic rules, we propose a verb-centric algorithm. This algorithm identifies and extracts the main verb(s) in a sentence, therefore, it does not require the usage of predefined rules or patterns. Using the main verb(s) it then extracts the two involved entities of a relationship. The biomedical entities are identified using a dependence parse tree by applying syntactic and linguistic features such as preposition phrases and semantic role analysis. The proposed verb-centric approach can effectively handle complex sentence structures such as clauses and conjunctive sentences. We evaluate the algorithm on several data sets and achieve an average F-score of 0.905, which is significantly higher than that of previous work." @default.
- W2083412062 created "2016-06-24" @default.
- W2083412062 creator A5013881706 @default.
- W2083412062 creator A5056615379 @default.
- W2083412062 creator A5076249543 @default.
- W2083412062 date "2010-09-01" @default.
- W2083412062 modified "2023-09-26" @default.
- W2083412062 title "A Verb-Centric Approach for Relationship Extraction in Biomedical Text" @default.
- W2083412062 cites W1981793043 @default.
- W2083412062 cites W2011726136 @default.
- W2083412062 cites W2016085990 @default.
- W2083412062 cites W2025209629 @default.
- W2083412062 cites W2036543108 @default.
- W2083412062 cites W2036935277 @default.
- W2083412062 cites W2038316408 @default.
- W2083412062 cites W2097960255 @default.
- W2083412062 cites W2099369363 @default.
- W2083412062 cites W2112750768 @default.
- W2083412062 cites W2115590900 @default.
- W2083412062 cites W2118002992 @default.
- W2083412062 cites W2123112337 @default.
- W2083412062 cites W2130260860 @default.
- W2083412062 cites W2144001613 @default.
- W2083412062 cites W2148282068 @default.
- W2083412062 cites W2151170651 @default.
- W2083412062 cites W2161490907 @default.
- W2083412062 cites W2168905447 @default.
- W2083412062 cites W4239389735 @default.
- W2083412062 cites W425447619 @default.
- W2083412062 cites W1972489322 @default.
- W2083412062 doi "https://doi.org/10.1109/icsc.2010.14" @default.
- W2083412062 hasPublicationYear "2010" @default.
- W2083412062 type Work @default.
- W2083412062 sameAs 2083412062 @default.
- W2083412062 citedByCount "23" @default.
- W2083412062 countsByYear W20834120622012 @default.
- W2083412062 countsByYear W20834120622013 @default.
- W2083412062 countsByYear W20834120622014 @default.
- W2083412062 countsByYear W20834120622015 @default.
- W2083412062 countsByYear W20834120622016 @default.
- W2083412062 countsByYear W20834120622017 @default.
- W2083412062 countsByYear W20834120622018 @default.
- W2083412062 countsByYear W20834120622019 @default.
- W2083412062 countsByYear W20834120622020 @default.
- W2083412062 countsByYear W20834120622022 @default.
- W2083412062 countsByYear W20834120622023 @default.
- W2083412062 crossrefType "proceedings-article" @default.
- W2083412062 hasAuthorship W2083412062A5013881706 @default.
- W2083412062 hasAuthorship W2083412062A5056615379 @default.
- W2083412062 hasAuthorship W2083412062A5076249543 @default.
- W2083412062 hasConcept C111919701 @default.
- W2083412062 hasConcept C120665830 @default.
- W2083412062 hasConcept C121332964 @default.
- W2083412062 hasConcept C127705205 @default.
- W2083412062 hasConcept C154945302 @default.
- W2083412062 hasConcept C162324750 @default.
- W2083412062 hasConcept C186644900 @default.
- W2083412062 hasConcept C187736073 @default.
- W2083412062 hasConcept C192209626 @default.
- W2083412062 hasConcept C204321447 @default.
- W2083412062 hasConcept C2776397901 @default.
- W2083412062 hasConcept C2777530160 @default.
- W2083412062 hasConcept C2780451532 @default.
- W2083412062 hasConcept C41008148 @default.
- W2083412062 hasConceptScore W2083412062C111919701 @default.
- W2083412062 hasConceptScore W2083412062C120665830 @default.
- W2083412062 hasConceptScore W2083412062C121332964 @default.
- W2083412062 hasConceptScore W2083412062C127705205 @default.
- W2083412062 hasConceptScore W2083412062C154945302 @default.
- W2083412062 hasConceptScore W2083412062C162324750 @default.
- W2083412062 hasConceptScore W2083412062C186644900 @default.
- W2083412062 hasConceptScore W2083412062C187736073 @default.
- W2083412062 hasConceptScore W2083412062C192209626 @default.
- W2083412062 hasConceptScore W2083412062C204321447 @default.
- W2083412062 hasConceptScore W2083412062C2776397901 @default.
- W2083412062 hasConceptScore W2083412062C2777530160 @default.
- W2083412062 hasConceptScore W2083412062C2780451532 @default.
- W2083412062 hasConceptScore W2083412062C41008148 @default.
- W2083412062 hasLocation W20834120621 @default.
- W2083412062 hasOpenAccess W2083412062 @default.
- W2083412062 hasPrimaryLocation W20834120621 @default.
- W2083412062 hasRelatedWork W138037485 @default.
- W2083412062 hasRelatedWork W1659887931 @default.
- W2083412062 hasRelatedWork W2167662847 @default.
- W2083412062 hasRelatedWork W2250591306 @default.
- W2083412062 hasRelatedWork W2293457016 @default.
- W2083412062 hasRelatedWork W2369308426 @default.
- W2083412062 hasRelatedWork W2502722637 @default.
- W2083412062 hasRelatedWork W2977842567 @default.
- W2083412062 hasRelatedWork W3186232876 @default.
- W2083412062 hasRelatedWork W1551406738 @default.
- W2083412062 isParatext "false" @default.
- W2083412062 isRetracted "false" @default.
- W2083412062 magId "2083412062" @default.
- W2083412062 workType "article" @default.