Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083442964> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2083442964 endingPage "2245" @default.
- W2083442964 startingPage "2218" @default.
- W2083442964 abstract "Understanding maritime traffic patterns is key to Maritime Situational Awareness applications, in particular, to classify and predict activities. Facilitated by the recent build-up of terrestrial networks and satellite constellations of Automatic Identification System (AIS) receivers, ship movement information is becoming increasingly available, both in coastal areas and open waters. The resulting amount of information is increasingly overwhelming to human operators, requiring the aid of automatic processing to synthesize the behaviors of interest in a clear and effective way. Although AIS data are only legally required for larger vessels, their use is growing, and they can be effectively used to infer different levels of contextual information, from the characterization of ports and off-shore platforms to spatial and temporal distributions of routes. An unsupervised and incremental learning approach to the extraction of maritime movement patterns is presented here to convert from raw data to information supporting decisions. This is a basis for automatically detecting anomalies and projecting current trajectories and patterns into the future. The proposed methodology, called TREAD (Traffic Route Extraction and Anomaly Detection) was developed for different levels of intermittency (i.e., sensor coverage and performance), persistence (i.e., time lag between subsequent observations) and data sources (i.e., ground-based and space-based receivers)." @default.
- W2083442964 created "2016-06-24" @default.
- W2083442964 creator A5073818477 @default.
- W2083442964 creator A5075249082 @default.
- W2083442964 creator A5087641493 @default.
- W2083442964 date "2013-06-04" @default.
- W2083442964 modified "2023-10-10" @default.
- W2083442964 title "Vessel Pattern Knowledge Discovery from AIS Data: A Framework for Anomaly Detection and Route Prediction" @default.
- W2083442964 cites W2048189453 @default.
- W2083442964 cites W2092272787 @default.
- W2083442964 cites W2111918405 @default.
- W2083442964 cites W2112082363 @default.
- W2083442964 cites W2122075562 @default.
- W2083442964 cites W2125838338 @default.
- W2083442964 cites W2128534087 @default.
- W2083442964 cites W2133235827 @default.
- W2083442964 cites W2133806441 @default.
- W2083442964 cites W2154728678 @default.
- W2083442964 cites W2158449659 @default.
- W2083442964 cites W2161587450 @default.
- W2083442964 cites W3190894976 @default.
- W2083442964 doi "https://doi.org/10.3390/e15062218" @default.
- W2083442964 hasPublicationYear "2013" @default.
- W2083442964 type Work @default.
- W2083442964 sameAs 2083442964 @default.
- W2083442964 citedByCount "451" @default.
- W2083442964 countsByYear W20834429642014 @default.
- W2083442964 countsByYear W20834429642015 @default.
- W2083442964 countsByYear W20834429642016 @default.
- W2083442964 countsByYear W20834429642017 @default.
- W2083442964 countsByYear W20834429642018 @default.
- W2083442964 countsByYear W20834429642019 @default.
- W2083442964 countsByYear W20834429642020 @default.
- W2083442964 countsByYear W20834429642021 @default.
- W2083442964 countsByYear W20834429642022 @default.
- W2083442964 countsByYear W20834429642023 @default.
- W2083442964 crossrefType "journal-article" @default.
- W2083442964 hasAuthorship W2083442964A5073818477 @default.
- W2083442964 hasAuthorship W2083442964A5075249082 @default.
- W2083442964 hasAuthorship W2083442964A5087641493 @default.
- W2083442964 hasBestOaLocation W20834429641 @default.
- W2083442964 hasConcept C116834253 @default.
- W2083442964 hasConcept C124101348 @default.
- W2083442964 hasConcept C127413603 @default.
- W2083442964 hasConcept C145804949 @default.
- W2083442964 hasConcept C146978453 @default.
- W2083442964 hasConcept C146997752 @default.
- W2083442964 hasConcept C154945302 @default.
- W2083442964 hasConcept C26517878 @default.
- W2083442964 hasConcept C38652104 @default.
- W2083442964 hasConcept C41008148 @default.
- W2083442964 hasConcept C59822182 @default.
- W2083442964 hasConcept C739882 @default.
- W2083442964 hasConcept C86803240 @default.
- W2083442964 hasConceptScore W2083442964C116834253 @default.
- W2083442964 hasConceptScore W2083442964C124101348 @default.
- W2083442964 hasConceptScore W2083442964C127413603 @default.
- W2083442964 hasConceptScore W2083442964C145804949 @default.
- W2083442964 hasConceptScore W2083442964C146978453 @default.
- W2083442964 hasConceptScore W2083442964C146997752 @default.
- W2083442964 hasConceptScore W2083442964C154945302 @default.
- W2083442964 hasConceptScore W2083442964C26517878 @default.
- W2083442964 hasConceptScore W2083442964C38652104 @default.
- W2083442964 hasConceptScore W2083442964C41008148 @default.
- W2083442964 hasConceptScore W2083442964C59822182 @default.
- W2083442964 hasConceptScore W2083442964C739882 @default.
- W2083442964 hasConceptScore W2083442964C86803240 @default.
- W2083442964 hasIssue "12" @default.
- W2083442964 hasLocation W20834429641 @default.
- W2083442964 hasLocation W20834429642 @default.
- W2083442964 hasOpenAccess W2083442964 @default.
- W2083442964 hasPrimaryLocation W20834429641 @default.
- W2083442964 hasRelatedWork W2363198264 @default.
- W2083442964 hasRelatedWork W2387722731 @default.
- W2083442964 hasRelatedWork W2584351053 @default.
- W2083442964 hasRelatedWork W2885391676 @default.
- W2083442964 hasRelatedWork W2952126265 @default.
- W2083442964 hasRelatedWork W3041276748 @default.
- W2083442964 hasRelatedWork W3187538536 @default.
- W2083442964 hasRelatedWork W4205214170 @default.
- W2083442964 hasRelatedWork W4378978080 @default.
- W2083442964 hasRelatedWork W1854158526 @default.
- W2083442964 hasVolume "15" @default.
- W2083442964 isParatext "false" @default.
- W2083442964 isRetracted "false" @default.
- W2083442964 magId "2083442964" @default.
- W2083442964 workType "article" @default.