Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083487639> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2083487639 endingPage "321" @default.
- W2083487639 startingPage "300" @default.
- W2083487639 abstract "This paper deals with smooth stable planes which generalize the notion of differentiable (affine or projective) planes [7]. It is intended to be the first one of a series of papers on smooth incidence geometry based on the Habilitationsschrift of the author. It contains the basic definitions and results which are needed to build up a foundation for a systematic study of smooth planes. We define smooth stable planes, and we prove that point rows and line pencils are closed submanifolds of the point set and line set, respectively (Theorem (1.6)). Moreover, the flag space is a closed submanifold of the product manifold % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! $Ptimes {cal L}$ (Theorem (1.14)), and the smooth structure on the set P of points and on the set % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! ${cal L}$ of lines is uniquely determined by the smooth structure of one single line pencil. In the second section it is shown that for any point p te P the tangent space TpP carries the structure of a locally compact affine translation plane % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! ${cal A}_p$ , see Theorem (2.5). Dually, we prove in Section 3 that for any line % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! $L in {cal L}$ the tangent space % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! ${rm T}_L{cal L}$ together with the set % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! ${cal rm S}_L=lbrace {rm T}_{L}{cal L}_pmid p in Lrbrace$ gives rise to some shear plane. It turned out that the translation planes % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! ${cal A}_p$ are one of the most important tools in the investigation of smooth incidence geometries. The linearization theorems (3.9), (3.11), and (4.4) can be viewed as the main results of this paper. In the closing section we investigate some homogeneity properties of smooth projective planes." @default.
- W2083487639 created "2016-06-24" @default.
- W2083487639 creator A5020829477 @default.
- W2083487639 date "1997-05-01" @default.
- W2083487639 modified "2023-10-16" @default.
- W2083487639 title "Smooth Stable Planes" @default.
- W2083487639 cites W1495412831 @default.
- W2083487639 cites W1967666442 @default.
- W2083487639 cites W1979311344 @default.
- W2083487639 cites W1979562539 @default.
- W2083487639 cites W1991668013 @default.
- W2083487639 cites W2002010220 @default.
- W2083487639 cites W2006194285 @default.
- W2083487639 cites W2007004128 @default.
- W2083487639 cites W2019890560 @default.
- W2083487639 cites W2035383974 @default.
- W2083487639 cites W2038539321 @default.
- W2083487639 cites W2043554419 @default.
- W2083487639 cites W2055593889 @default.
- W2083487639 cites W2078553210 @default.
- W2083487639 cites W2080460227 @default.
- W2083487639 cites W2116718294 @default.
- W2083487639 cites W2134196152 @default.
- W2083487639 cites W2243921039 @default.
- W2083487639 cites W2324960337 @default.
- W2083487639 cites W2600624912 @default.
- W2083487639 cites W3005440664 @default.
- W2083487639 cites W3161275004 @default.
- W2083487639 cites W3191669034 @default.
- W2083487639 cites W4210435914 @default.
- W2083487639 cites W4213152686 @default.
- W2083487639 cites W4213207983 @default.
- W2083487639 cites W4235840289 @default.
- W2083487639 cites W4245037282 @default.
- W2083487639 cites W4247458820 @default.
- W2083487639 cites W4252664275 @default.
- W2083487639 cites W626331858 @default.
- W2083487639 cites W639426076 @default.
- W2083487639 doi "https://doi.org/10.1007/bf03322167" @default.
- W2083487639 hasPublicationYear "1997" @default.
- W2083487639 type Work @default.
- W2083487639 sameAs 2083487639 @default.
- W2083487639 citedByCount "11" @default.
- W2083487639 crossrefType "journal-article" @default.
- W2083487639 hasAuthorship W2083487639A5020829477 @default.
- W2083487639 hasBestOaLocation W20834876392 @default.
- W2083487639 hasConcept C112698675 @default.
- W2083487639 hasConcept C114614502 @default.
- W2083487639 hasConcept C117220453 @default.
- W2083487639 hasConcept C138187205 @default.
- W2083487639 hasConcept C144133560 @default.
- W2083487639 hasConcept C151300846 @default.
- W2083487639 hasConcept C157157409 @default.
- W2083487639 hasConcept C202444582 @default.
- W2083487639 hasConcept C2524010 @default.
- W2083487639 hasConcept C2780129039 @default.
- W2083487639 hasConcept C33923547 @default.
- W2083487639 hasConcept C39290043 @default.
- W2083487639 hasConcept C92757383 @default.
- W2083487639 hasConceptScore W2083487639C112698675 @default.
- W2083487639 hasConceptScore W2083487639C114614502 @default.
- W2083487639 hasConceptScore W2083487639C117220453 @default.
- W2083487639 hasConceptScore W2083487639C138187205 @default.
- W2083487639 hasConceptScore W2083487639C144133560 @default.
- W2083487639 hasConceptScore W2083487639C151300846 @default.
- W2083487639 hasConceptScore W2083487639C157157409 @default.
- W2083487639 hasConceptScore W2083487639C202444582 @default.
- W2083487639 hasConceptScore W2083487639C2524010 @default.
- W2083487639 hasConceptScore W2083487639C2780129039 @default.
- W2083487639 hasConceptScore W2083487639C33923547 @default.
- W2083487639 hasConceptScore W2083487639C39290043 @default.
- W2083487639 hasConceptScore W2083487639C92757383 @default.
- W2083487639 hasIssue "3-4" @default.
- W2083487639 hasLocation W20834876391 @default.
- W2083487639 hasLocation W20834876392 @default.
- W2083487639 hasOpenAccess W2083487639 @default.
- W2083487639 hasPrimaryLocation W20834876391 @default.
- W2083487639 hasRelatedWork W2056778114 @default.
- W2083487639 hasRelatedWork W2325814777 @default.
- W2083487639 hasRelatedWork W2944467685 @default.
- W2083487639 hasRelatedWork W2951273950 @default.
- W2083487639 hasRelatedWork W2963375012 @default.
- W2083487639 hasRelatedWork W3042547706 @default.
- W2083487639 hasRelatedWork W3100301614 @default.
- W2083487639 hasRelatedWork W3125275763 @default.
- W2083487639 hasRelatedWork W4220727228 @default.
- W2083487639 hasRelatedWork W4214790068 @default.
- W2083487639 hasVolume "31" @default.
- W2083487639 isParatext "false" @default.
- W2083487639 isRetracted "false" @default.
- W2083487639 magId "2083487639" @default.
- W2083487639 workType "article" @default.