Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083516192> ?p ?o ?g. }
- W2083516192 endingPage "488" @default.
- W2083516192 startingPage "484" @default.
- W2083516192 abstract "Gram-negative bacteria, such as Escherichia coli, use tripartite efflux complexes in the resistance-nodulation-division family to expel diverse toxic compounds from the cell. The CusCBA system is responsible for extruding biocidal Cu(I) and Ag(I) ions from the cell. The X-ray crystal structure of CusA, the inner membrane transporter, has now been determined in the absence and presence of bound Cu(I) or Ag(I). The structures suggest that the metal binding site, formed by a three-methionine cluster, is located within the cleft region of the periplasmic domain. The authors propose a potential pathway for ion export in which CusA is capable of picking up the metal ion from the cytosol, with this transporter utilizing the methionine pairs and clusters to bind and export metal ions. Gram-negative bacteria, such as Escherichia coli, use tripartite efflux complexes in the resistance-nodulation-cell division family to expel toxic compounds from the cell. The CusCBA system is responsible for removing biocidal Cu(I) and Ag(I) ions. Here, the X-ray crystal structure is reported of CusA in the absence and presence of bound Cu(I) or Ag(I). The structures reveal that the metal-binding sites are located within the cleft region of the periplasmic domain. A potential pathway for ion export is proposed. Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell1,2. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions3,4. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs—three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites." @default.
- W2083516192 created "2016-06-24" @default.
- W2083516192 creator A5022264314 @default.
- W2083516192 creator A5023494109 @default.
- W2083516192 creator A5054127002 @default.
- W2083516192 creator A5056475276 @default.
- W2083516192 creator A5059977504 @default.
- W2083516192 creator A5065708016 @default.
- W2083516192 creator A5074291193 @default.
- W2083516192 date "2010-09-01" @default.
- W2083516192 modified "2023-10-13" @default.
- W2083516192 title "Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport" @default.
- W2083516192 cites W1539796472 @default.
- W2083516192 cites W1892148740 @default.
- W2083516192 cites W1968608086 @default.
- W2083516192 cites W1970803152 @default.
- W2083516192 cites W1983732912 @default.
- W2083516192 cites W1985400607 @default.
- W2083516192 cites W1990181521 @default.
- W2083516192 cites W1995017064 @default.
- W2083516192 cites W1995732138 @default.
- W2083516192 cites W2000383223 @default.
- W2083516192 cites W2001641653 @default.
- W2083516192 cites W2010438788 @default.
- W2083516192 cites W2018396099 @default.
- W2083516192 cites W2031850112 @default.
- W2083516192 cites W2036354096 @default.
- W2083516192 cites W2038684541 @default.
- W2083516192 cites W2061804805 @default.
- W2083516192 cites W2070042354 @default.
- W2083516192 cites W2070196678 @default.
- W2083516192 cites W2071483422 @default.
- W2083516192 cites W2077920529 @default.
- W2083516192 cites W2078840098 @default.
- W2083516192 cites W2079204867 @default.
- W2083516192 cites W2084778413 @default.
- W2083516192 cites W2088109519 @default.
- W2083516192 cites W2094203715 @default.
- W2083516192 cites W2113156278 @default.
- W2083516192 cites W2113755389 @default.
- W2083516192 cites W2113929513 @default.
- W2083516192 cites W2113994268 @default.
- W2083516192 cites W2114524505 @default.
- W2083516192 cites W2116137883 @default.
- W2083516192 cites W2120218267 @default.
- W2083516192 cites W2121303975 @default.
- W2083516192 cites W2132067013 @default.
- W2083516192 cites W2144081223 @default.
- W2083516192 cites W2145307718 @default.
- W2083516192 cites W2150981663 @default.
- W2083516192 cites W2153731681 @default.
- W2083516192 cites W2163341755 @default.
- W2083516192 cites W4245017398 @default.
- W2083516192 doi "https://doi.org/10.1038/nature09395" @default.
- W2083516192 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2946090" @default.
- W2083516192 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20865003" @default.
- W2083516192 hasPublicationYear "2010" @default.
- W2083516192 type Work @default.
- W2083516192 sameAs 2083516192 @default.
- W2083516192 citedByCount "218" @default.
- W2083516192 countsByYear W20835161922012 @default.
- W2083516192 countsByYear W20835161922013 @default.
- W2083516192 countsByYear W20835161922014 @default.
- W2083516192 countsByYear W20835161922015 @default.
- W2083516192 countsByYear W20835161922016 @default.
- W2083516192 countsByYear W20835161922017 @default.
- W2083516192 countsByYear W20835161922018 @default.
- W2083516192 countsByYear W20835161922019 @default.
- W2083516192 countsByYear W20835161922020 @default.
- W2083516192 countsByYear W20835161922021 @default.
- W2083516192 countsByYear W20835161922022 @default.
- W2083516192 countsByYear W20835161922023 @default.
- W2083516192 crossrefType "journal-article" @default.
- W2083516192 hasAuthorship W2083516192A5022264314 @default.
- W2083516192 hasAuthorship W2083516192A5023494109 @default.
- W2083516192 hasAuthorship W2083516192A5054127002 @default.
- W2083516192 hasAuthorship W2083516192A5056475276 @default.
- W2083516192 hasAuthorship W2083516192A5059977504 @default.
- W2083516192 hasAuthorship W2083516192A5065708016 @default.
- W2083516192 hasAuthorship W2083516192A5074291193 @default.
- W2083516192 hasBestOaLocation W20835161922 @default.
- W2083516192 hasConcept C104317684 @default.
- W2083516192 hasConcept C12554922 @default.
- W2083516192 hasConcept C178790620 @default.
- W2083516192 hasConcept C185592680 @default.
- W2083516192 hasConcept C19655278 @default.
- W2083516192 hasConcept C200082930 @default.
- W2083516192 hasConcept C201663137 @default.
- W2083516192 hasConcept C2776051709 @default.
- W2083516192 hasConcept C2780912031 @default.
- W2083516192 hasConcept C515207424 @default.
- W2083516192 hasConcept C523546767 @default.
- W2083516192 hasConcept C54355233 @default.
- W2083516192 hasConcept C544153396 @default.
- W2083516192 hasConcept C547475151 @default.
- W2083516192 hasConcept C55493867 @default.
- W2083516192 hasConcept C86803240 @default.
- W2083516192 hasConceptScore W2083516192C104317684 @default.