Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083620425> ?p ?o ?g. }
- W2083620425 endingPage "598" @default.
- W2083620425 startingPage "589" @default.
- W2083620425 abstract "This paper evaluates the performance of different types of Regression Trees (RTs) in a real problem of very short-term wind speed prediction from measuring data in wind farms. RT is a solidly established methodology that, contrary to other soft-computing approaches, has been under-explored in problems of wind speed prediction in wind farms. In this paper we comparatively evaluate eight different types of RTs algorithms, and we show that they are able obtain excellent results in real problems of very short-term wind speed prediction, improving existing classical and soft-computing approaches such as multi-linear regression approaches, different types of neural networks and support vector regression algorithms in this problem. We also show that RTs have a very small computation time, that allows the retraining of the algorithms whenever new wind speed data are collected from the measuring towers." @default.
- W2083620425 created "2016-06-24" @default.
- W2083620425 creator A5007453127 @default.
- W2083620425 creator A5034384417 @default.
- W2083620425 creator A5036001529 @default.
- W2083620425 creator A5060780612 @default.
- W2083620425 creator A5065414106 @default.
- W2083620425 date "2015-09-01" @default.
- W2083620425 modified "2023-10-18" @default.
- W2083620425 title "Local models-based regression trees for very short-term wind speed prediction" @default.
- W2083620425 cites W12043821 @default.
- W2083620425 cites W1964357740 @default.
- W2083620425 cites W1966499742 @default.
- W2083620425 cites W1967007336 @default.
- W2083620425 cites W1985504623 @default.
- W2083620425 cites W1992827946 @default.
- W2083620425 cites W1994064251 @default.
- W2083620425 cites W2001043283 @default.
- W2083620425 cites W2003201814 @default.
- W2083620425 cites W2016603580 @default.
- W2083620425 cites W2022188138 @default.
- W2083620425 cites W2025081778 @default.
- W2083620425 cites W2027486666 @default.
- W2083620425 cites W2029773723 @default.
- W2083620425 cites W2044459812 @default.
- W2083620425 cites W2055514786 @default.
- W2083620425 cites W2060608702 @default.
- W2083620425 cites W2063757041 @default.
- W2083620425 cites W2070766114 @default.
- W2083620425 cites W2074047060 @default.
- W2083620425 cites W2076466685 @default.
- W2083620425 cites W2077228827 @default.
- W2083620425 cites W2078476201 @default.
- W2083620425 cites W2078936307 @default.
- W2083620425 cites W2081526790 @default.
- W2083620425 cites W2083023281 @default.
- W2083620425 cites W2088874310 @default.
- W2083620425 cites W2098659790 @default.
- W2083620425 cites W2111072639 @default.
- W2083620425 cites W2113238782 @default.
- W2083620425 cites W2122173830 @default.
- W2083620425 cites W2153476503 @default.
- W2083620425 cites W2156583932 @default.
- W2083620425 cites W2160300416 @default.
- W2083620425 cites W2165564619 @default.
- W2083620425 cites W2166611430 @default.
- W2083620425 cites W2170566608 @default.
- W2083620425 doi "https://doi.org/10.1016/j.renene.2015.03.071" @default.
- W2083620425 hasPublicationYear "2015" @default.
- W2083620425 type Work @default.
- W2083620425 sameAs 2083620425 @default.
- W2083620425 citedByCount "63" @default.
- W2083620425 countsByYear W20836204252015 @default.
- W2083620425 countsByYear W20836204252016 @default.
- W2083620425 countsByYear W20836204252017 @default.
- W2083620425 countsByYear W20836204252018 @default.
- W2083620425 countsByYear W20836204252019 @default.
- W2083620425 countsByYear W20836204252020 @default.
- W2083620425 countsByYear W20836204252021 @default.
- W2083620425 countsByYear W20836204252022 @default.
- W2083620425 countsByYear W20836204252023 @default.
- W2083620425 crossrefType "journal-article" @default.
- W2083620425 hasAuthorship W2083620425A5007453127 @default.
- W2083620425 hasAuthorship W2083620425A5034384417 @default.
- W2083620425 hasAuthorship W2083620425A5036001529 @default.
- W2083620425 hasAuthorship W2083620425A5060780612 @default.
- W2083620425 hasAuthorship W2083620425A5065414106 @default.
- W2083620425 hasBestOaLocation W20836204252 @default.
- W2083620425 hasConcept C105795698 @default.
- W2083620425 hasConcept C111919701 @default.
- W2083620425 hasConcept C11413529 @default.
- W2083620425 hasConcept C119857082 @default.
- W2083620425 hasConcept C121332964 @default.
- W2083620425 hasConcept C12267149 @default.
- W2083620425 hasConcept C124101348 @default.
- W2083620425 hasConcept C140073362 @default.
- W2083620425 hasConcept C152877465 @default.
- W2083620425 hasConcept C153294291 @default.
- W2083620425 hasConcept C154945302 @default.
- W2083620425 hasConcept C161067210 @default.
- W2083620425 hasConcept C205649164 @default.
- W2083620425 hasConcept C33923547 @default.
- W2083620425 hasConcept C41008148 @default.
- W2083620425 hasConcept C45374587 @default.
- W2083620425 hasConcept C48921125 @default.
- W2083620425 hasConcept C50644808 @default.
- W2083620425 hasConcept C61797465 @default.
- W2083620425 hasConcept C62520636 @default.
- W2083620425 hasConcept C68339613 @default.
- W2083620425 hasConcept C83546350 @default.
- W2083620425 hasConceptScore W2083620425C105795698 @default.
- W2083620425 hasConceptScore W2083620425C111919701 @default.
- W2083620425 hasConceptScore W2083620425C11413529 @default.
- W2083620425 hasConceptScore W2083620425C119857082 @default.
- W2083620425 hasConceptScore W2083620425C121332964 @default.
- W2083620425 hasConceptScore W2083620425C12267149 @default.
- W2083620425 hasConceptScore W2083620425C124101348 @default.
- W2083620425 hasConceptScore W2083620425C140073362 @default.