Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083670761> ?p ?o ?g. }
- W2083670761 endingPage "405" @default.
- W2083670761 startingPage "395" @default.
- W2083670761 abstract "View-based methods are popular in 3D object recognition. However, current methods with traditional classifiers are usually based on one-to-one view matching and fail to capture the structure information of multiple views. Some multi-view based methods take different views into consideration, but they still treat views separately. In this paper, we propose a novel 3D object recognizing method based on multi-view data fusion, called Multi-view Ensemble Manifold Regularization (MEMR). In this method, we model image features with a regularization term for SVM. To train this modified SVM, multi-view learning is achieved with alternating optimization. Hypergraph construction is used to better capture the connectivity among views. Experimental results show that the accuracy rate has been improved by 20-25%, which demonstrates the effectiveness of the proposed method." @default.
- W2083670761 created "2016-06-24" @default.
- W2083670761 creator A5045562050 @default.
- W2083670761 creator A5050817770 @default.
- W2083670761 creator A5067600725 @default.
- W2083670761 creator A5068425936 @default.
- W2083670761 creator A5085573295 @default.
- W2083670761 date "2015-11-01" @default.
- W2083670761 modified "2023-10-17" @default.
- W2083670761 title "Multi-view ensemble manifold regularization for 3D object recognition" @default.
- W2083670761 cites W1563354748 @default.
- W2083670761 cites W1953764758 @default.
- W2083670761 cites W1970493565 @default.
- W2083670761 cites W2002552324 @default.
- W2083670761 cites W2006904655 @default.
- W2083670761 cites W2012673871 @default.
- W2083670761 cites W2018938122 @default.
- W2083670761 cites W2021003221 @default.
- W2083670761 cites W2032355985 @default.
- W2083670761 cites W2035543751 @default.
- W2083670761 cites W2048997552 @default.
- W2083670761 cites W2052214166 @default.
- W2083670761 cites W2068078373 @default.
- W2083670761 cites W2073416270 @default.
- W2083670761 cites W2078366715 @default.
- W2083670761 cites W2080720633 @default.
- W2083670761 cites W2083572085 @default.
- W2083670761 cites W2094850941 @default.
- W2083670761 cites W2095536970 @default.
- W2083670761 cites W2095609079 @default.
- W2083670761 cites W2097703723 @default.
- W2083670761 cites W2099606917 @default.
- W2083670761 cites W2110226872 @default.
- W2083670761 cites W2112037975 @default.
- W2083670761 cites W2117513046 @default.
- W2083670761 cites W2120515362 @default.
- W2083670761 cites W2121947440 @default.
- W2083670761 cites W2126919441 @default.
- W2083670761 cites W2132822263 @default.
- W2083670761 cites W2133343739 @default.
- W2083670761 cites W2138505220 @default.
- W2083670761 cites W2138516811 @default.
- W2083670761 cites W2142399819 @default.
- W2083670761 cites W2142634143 @default.
- W2083670761 cites W2154624311 @default.
- W2083670761 cites W2159680539 @default.
- W2083670761 cites W2166168249 @default.
- W2083670761 cites W4229749918 @default.
- W2083670761 doi "https://doi.org/10.1016/j.ins.2015.03.032" @default.
- W2083670761 hasPublicationYear "2015" @default.
- W2083670761 type Work @default.
- W2083670761 sameAs 2083670761 @default.
- W2083670761 citedByCount "79" @default.
- W2083670761 countsByYear W20836707612015 @default.
- W2083670761 countsByYear W20836707612016 @default.
- W2083670761 countsByYear W20836707612017 @default.
- W2083670761 countsByYear W20836707612018 @default.
- W2083670761 countsByYear W20836707612019 @default.
- W2083670761 countsByYear W20836707612020 @default.
- W2083670761 countsByYear W20836707612021 @default.
- W2083670761 countsByYear W20836707612022 @default.
- W2083670761 countsByYear W20836707612023 @default.
- W2083670761 crossrefType "journal-article" @default.
- W2083670761 hasAuthorship W2083670761A5045562050 @default.
- W2083670761 hasAuthorship W2083670761A5050817770 @default.
- W2083670761 hasAuthorship W2083670761A5067600725 @default.
- W2083670761 hasAuthorship W2083670761A5068425936 @default.
- W2083670761 hasAuthorship W2083670761A5085573295 @default.
- W2083670761 hasConcept C127413603 @default.
- W2083670761 hasConcept C153180895 @default.
- W2083670761 hasConcept C154945302 @default.
- W2083670761 hasConcept C2776135515 @default.
- W2083670761 hasConcept C2781238097 @default.
- W2083670761 hasConcept C31972630 @default.
- W2083670761 hasConcept C33923547 @default.
- W2083670761 hasConcept C41008148 @default.
- W2083670761 hasConcept C529865628 @default.
- W2083670761 hasConcept C78519656 @default.
- W2083670761 hasConceptScore W2083670761C127413603 @default.
- W2083670761 hasConceptScore W2083670761C153180895 @default.
- W2083670761 hasConceptScore W2083670761C154945302 @default.
- W2083670761 hasConceptScore W2083670761C2776135515 @default.
- W2083670761 hasConceptScore W2083670761C2781238097 @default.
- W2083670761 hasConceptScore W2083670761C31972630 @default.
- W2083670761 hasConceptScore W2083670761C33923547 @default.
- W2083670761 hasConceptScore W2083670761C41008148 @default.
- W2083670761 hasConceptScore W2083670761C529865628 @default.
- W2083670761 hasConceptScore W2083670761C78519656 @default.
- W2083670761 hasFunder F4320321001 @default.
- W2083670761 hasFunder F4320334924 @default.
- W2083670761 hasLocation W20836707611 @default.
- W2083670761 hasOpenAccess W2083670761 @default.
- W2083670761 hasPrimaryLocation W20836707611 @default.
- W2083670761 hasRelatedWork W1837097281 @default.
- W2083670761 hasRelatedWork W1966410754 @default.
- W2083670761 hasRelatedWork W2007544051 @default.
- W2083670761 hasRelatedWork W2016398835 @default.
- W2083670761 hasRelatedWork W2030539674 @default.