Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083703071> ?p ?o ?g. }
- W2083703071 endingPage "e86696" @default.
- W2083703071 startingPage "e86696" @default.
- W2083703071 abstract "Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems." @default.
- W2083703071 created "2016-06-24" @default.
- W2083703071 creator A5003710781 @default.
- W2083703071 creator A5004032660 @default.
- W2083703071 creator A5066537128 @default.
- W2083703071 creator A5067665186 @default.
- W2083703071 date "2014-01-31" @default.
- W2083703071 modified "2023-09-29" @default.
- W2083703071 title "Automated Design of Complex Dynamic Systems" @default.
- W2083703071 cites W114517082 @default.
- W2083703071 cites W1609223620 @default.
- W2083703071 cites W1965702053 @default.
- W2083703071 cites W1971129545 @default.
- W2083703071 cites W1978718464 @default.
- W2083703071 cites W1980661496 @default.
- W2083703071 cites W2001404477 @default.
- W2083703071 cites W2001685400 @default.
- W2083703071 cites W2016589492 @default.
- W2083703071 cites W2065246571 @default.
- W2083703071 cites W2079735306 @default.
- W2083703071 cites W2090252028 @default.
- W2083703071 cites W2093581986 @default.
- W2083703071 cites W2105348833 @default.
- W2083703071 cites W2112036188 @default.
- W2083703071 cites W2126273023 @default.
- W2083703071 cites W2143503258 @default.
- W2083703071 cites W2146349634 @default.
- W2083703071 cites W2152722082 @default.
- W2083703071 cites W2155707776 @default.
- W2083703071 cites W2156174987 @default.
- W2083703071 cites W2156436274 @default.
- W2083703071 cites W2165530525 @default.
- W2083703071 cites W2766736793 @default.
- W2083703071 cites W2989598268 @default.
- W2083703071 cites W3101465594 @default.
- W2083703071 cites W4211228226 @default.
- W2083703071 cites W4231327205 @default.
- W2083703071 cites W53522008 @default.
- W2083703071 doi "https://doi.org/10.1371/journal.pone.0086696" @default.
- W2083703071 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3908928" @default.
- W2083703071 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24497969" @default.
- W2083703071 hasPublicationYear "2014" @default.
- W2083703071 type Work @default.
- W2083703071 sameAs 2083703071 @default.
- W2083703071 citedByCount "22" @default.
- W2083703071 countsByYear W20837030712014 @default.
- W2083703071 countsByYear W20837030712015 @default.
- W2083703071 countsByYear W20837030712016 @default.
- W2083703071 countsByYear W20837030712017 @default.
- W2083703071 countsByYear W20837030712018 @default.
- W2083703071 countsByYear W20837030712019 @default.
- W2083703071 countsByYear W20837030712020 @default.
- W2083703071 countsByYear W20837030712021 @default.
- W2083703071 countsByYear W20837030712022 @default.
- W2083703071 countsByYear W20837030712023 @default.
- W2083703071 crossrefType "journal-article" @default.
- W2083703071 hasAuthorship W2083703071A5003710781 @default.
- W2083703071 hasAuthorship W2083703071A5004032660 @default.
- W2083703071 hasAuthorship W2083703071A5066537128 @default.
- W2083703071 hasAuthorship W2083703071A5067665186 @default.
- W2083703071 hasBestOaLocation W20837030711 @default.
- W2083703071 hasConcept C11413529 @default.
- W2083703071 hasConcept C116672817 @default.
- W2083703071 hasConcept C119857082 @default.
- W2083703071 hasConcept C121332964 @default.
- W2083703071 hasConcept C126255220 @default.
- W2083703071 hasConcept C127413603 @default.
- W2083703071 hasConcept C133731056 @default.
- W2083703071 hasConcept C134306372 @default.
- W2083703071 hasConcept C137836250 @default.
- W2083703071 hasConcept C154945302 @default.
- W2083703071 hasConcept C158622935 @default.
- W2083703071 hasConcept C177264268 @default.
- W2083703071 hasConcept C199360897 @default.
- W2083703071 hasConcept C202444582 @default.
- W2083703071 hasConcept C33923547 @default.
- W2083703071 hasConcept C34413123 @default.
- W2083703071 hasConcept C36503486 @default.
- W2083703071 hasConcept C41008148 @default.
- W2083703071 hasConcept C45374587 @default.
- W2083703071 hasConcept C47822265 @default.
- W2083703071 hasConcept C62520636 @default.
- W2083703071 hasConcept C77405623 @default.
- W2083703071 hasConcept C79379906 @default.
- W2083703071 hasConcept C90509273 @default.
- W2083703071 hasConcept C91575142 @default.
- W2083703071 hasConcept C9652623 @default.
- W2083703071 hasConceptScore W2083703071C11413529 @default.
- W2083703071 hasConceptScore W2083703071C116672817 @default.
- W2083703071 hasConceptScore W2083703071C119857082 @default.
- W2083703071 hasConceptScore W2083703071C121332964 @default.
- W2083703071 hasConceptScore W2083703071C126255220 @default.
- W2083703071 hasConceptScore W2083703071C127413603 @default.
- W2083703071 hasConceptScore W2083703071C133731056 @default.
- W2083703071 hasConceptScore W2083703071C134306372 @default.
- W2083703071 hasConceptScore W2083703071C137836250 @default.
- W2083703071 hasConceptScore W2083703071C154945302 @default.
- W2083703071 hasConceptScore W2083703071C158622935 @default.