Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083743668> ?p ?o ?g. }
- W2083743668 endingPage "10398" @default.
- W2083743668 startingPage "10392" @default.
- W2083743668 abstract "Previous studies have demonstrated that effective cytotoxic T lymphocyte (CTL) responses drive the selection of escape mutations that reduce viral replication capacity (VRC). Escape mutations, including those with reduced VRC, can be transmitted and accumulate in a population. Here we compared two antiretroviral therapy (ART)-naive HIV clade B-infected cohorts, in Mexico and Barbados, in which the most protective HLA alleles (HLA-B*27/57/58:01/81:01) are differentially expressed, at 8% and 34%, respectively. Viral loads were significantly higher in Mexico than in Barbados (median, 40,774 versus 14,200; P < 0.0001), and absolute CD4(+) T-cell counts were somewhat lower (median, 380/mm(3) versus 403/mm(3); P = 0.007). We tested the hypothesis that the disparate frequencies of these protective HLA alleles would be associated with a higher VRC at the population level in Mexico. Analysis of VRC in subjects in each cohort, matched for CD4(+) T-cell count, revealed that the VRC was indeed higher in the Mexican cohort (mean, 1.13 versus 1.03; P = 0.0025). Although CD4 counts were matched, viral loads remained significantly higher in the Mexican subjects (P = 0.04). This VRC difference was reflected by a significantly higher frequency in the Barbados cohort of HLA-B*27/57/58:01/81:01-associated Gag escape mutations previously shown to incur a fitness cost on the virus (P = 0.004), a difference between the two cohorts that remained statistically significant even in subjects not expressing these protective alleles (P = 0.01). These data suggest that viral set points and disease progression rates at the population level may be significantly influenced by the prevalence of protective HLA alleles such as HLA-B*27/57/58:01/81:01 and that CD4 count-based guidelines to initiate antiretroviral therapy may need to be modified accordingly, to optimize the effectiveness of treatment-for-prevention strategies and reduce HIV transmission rates to the absolute minimum.Immune control of HIV at an individual level is strongly influenced by the HLA class I genotype. HLA class I molecules mediating effective immune control, such as HLA-B*27 and HLA-B*57, are associated with the selection of escape mutants that reduce viral replicative capacity. The escape mutants selected in infected patients can be transmitted and affect the viral load and CD4 count in the recipient. These findings prompt the hypothesis that the frequency of protective alleles in a population may affect viral set points and rates of disease progression in that population. These studies in Mexico and Barbados, where the prevalence rates of protective HLA alleles are 8% and 34%, respectively, support this hypothesis. These data suggest that antiretroviral therapy (ART) treatment-for-prevention strategies will be less successful in populations such as those in Mexico, where viral loads are higher for a given CD4 count. Consideration may therefore usefully be given to ART initiation at higher absolute CD4 counts in such populations to optimize the impact of ART for prevention." @default.
- W2083743668 created "2016-06-24" @default.
- W2083743668 creator A5016050442 @default.
- W2083743668 creator A5018523831 @default.
- W2083743668 creator A5022756190 @default.
- W2083743668 creator A5027709892 @default.
- W2083743668 creator A5029251146 @default.
- W2083743668 creator A5043346206 @default.
- W2083743668 creator A5045341659 @default.
- W2083743668 creator A5053364028 @default.
- W2083743668 creator A5057546845 @default.
- W2083743668 creator A5074085845 @default.
- W2083743668 creator A5074567076 @default.
- W2083743668 creator A5080881874 @default.
- W2083743668 creator A5086496217 @default.
- W2083743668 date "2014-09-15" @default.
- W2083743668 modified "2023-09-27" @default.
- W2083743668 title "Impact of HLA Selection Pressure on HIV Fitness at a Population Level in Mexico and Barbados" @default.
- W2083743668 cites W2003934604 @default.
- W2083743668 cites W2009082439 @default.
- W2083743668 cites W2016759320 @default.
- W2083743668 cites W2020097327 @default.
- W2083743668 cites W2032317721 @default.
- W2083743668 cites W2034329786 @default.
- W2083743668 cites W2045551237 @default.
- W2083743668 cites W2051807614 @default.
- W2083743668 cites W2053002571 @default.
- W2083743668 cites W2053695022 @default.
- W2083743668 cites W2063485002 @default.
- W2083743668 cites W2067774414 @default.
- W2083743668 cites W2069926681 @default.
- W2083743668 cites W2070842850 @default.
- W2083743668 cites W2075906228 @default.
- W2083743668 cites W2078916215 @default.
- W2083743668 cites W2082738868 @default.
- W2083743668 cites W2087484510 @default.
- W2083743668 cites W2095983332 @default.
- W2083743668 cites W2096015577 @default.
- W2083743668 cites W2096932129 @default.
- W2083743668 cites W2099272076 @default.
- W2083743668 cites W2099364824 @default.
- W2083743668 cites W2103314023 @default.
- W2083743668 cites W2107186721 @default.
- W2083743668 cites W2112507995 @default.
- W2083743668 cites W2116296845 @default.
- W2083743668 cites W2116745209 @default.
- W2083743668 cites W2118115182 @default.
- W2083743668 cites W2120529419 @default.
- W2083743668 cites W2121487910 @default.
- W2083743668 cites W2121546980 @default.
- W2083743668 cites W2121634437 @default.
- W2083743668 cites W2125377484 @default.
- W2083743668 cites W2138594667 @default.
- W2083743668 cites W2140193569 @default.
- W2083743668 cites W2143430982 @default.
- W2083743668 cites W2143864965 @default.
- W2083743668 cites W2144606496 @default.
- W2083743668 cites W2146366486 @default.
- W2083743668 cites W2151326236 @default.
- W2083743668 cites W2155324027 @default.
- W2083743668 cites W2156383712 @default.
- W2083743668 cites W2160893792 @default.
- W2083743668 cites W2169847792 @default.
- W2083743668 cites W2314461521 @default.
- W2083743668 doi "https://doi.org/10.1128/jvi.01162-14" @default.
- W2083743668 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4178877" @default.
- W2083743668 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25008926" @default.
- W2083743668 hasPublicationYear "2014" @default.
- W2083743668 type Work @default.
- W2083743668 sameAs 2083743668 @default.
- W2083743668 citedByCount "15" @default.
- W2083743668 countsByYear W20837436682015 @default.
- W2083743668 countsByYear W20837436682016 @default.
- W2083743668 countsByYear W20837436682017 @default.
- W2083743668 countsByYear W20837436682018 @default.
- W2083743668 countsByYear W20837436682019 @default.
- W2083743668 countsByYear W20837436682020 @default.
- W2083743668 countsByYear W20837436682021 @default.
- W2083743668 countsByYear W20837436682022 @default.
- W2083743668 crossrefType "journal-article" @default.
- W2083743668 hasAuthorship W2083743668A5016050442 @default.
- W2083743668 hasAuthorship W2083743668A5018523831 @default.
- W2083743668 hasAuthorship W2083743668A5022756190 @default.
- W2083743668 hasAuthorship W2083743668A5027709892 @default.
- W2083743668 hasAuthorship W2083743668A5029251146 @default.
- W2083743668 hasAuthorship W2083743668A5043346206 @default.
- W2083743668 hasAuthorship W2083743668A5045341659 @default.
- W2083743668 hasAuthorship W2083743668A5053364028 @default.
- W2083743668 hasAuthorship W2083743668A5057546845 @default.
- W2083743668 hasAuthorship W2083743668A5074085845 @default.
- W2083743668 hasAuthorship W2083743668A5074567076 @default.
- W2083743668 hasAuthorship W2083743668A5080881874 @default.
- W2083743668 hasAuthorship W2083743668A5086496217 @default.
- W2083743668 hasBestOaLocation W20837436681 @default.
- W2083743668 hasConcept C104317684 @default.
- W2083743668 hasConcept C126322002 @default.
- W2083743668 hasConcept C142462285 @default.
- W2083743668 hasConcept C144024400 @default.