Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083752743> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2083752743 endingPage "704" @default.
- W2083752743 startingPage "697" @default.
- W2083752743 abstract "To investigate whether rapamycin could attenuate hepatic I/R injury in a cirrhotic rat liver transplantation model, we applied a rat orthotopic liver transplantation model using 100% or 50% of liver grafts and cirrhotic recipients. Rapamycin was given (0.2 mg/kg, i.v.) at 30 min before graft harvesting in the donor and 24 h before operation, 30 min before total hepatectomy and immediately after reperfusion in the recipient. Rapamycin significantly improved small-for-size graft survival from 8.3% (1/12) to 66.7% (8/12) (p = 0.027). It also increased 7-day survival rates of whole grafts (58.3%[7/12] vs. 83.3%[10/12], p = 0.371). Activation of hepatic stellate cells was mainly found in small-for-size grafts during the first 7 days after liver transplantation. Rapamycin suppressed expression of smooth muscle actin, which is a marker of hepatic stellate cell activation, especially in small-for-size grafts. Intragraft protein expression and mRNA levels of vascular endothelial growth factor (VEGF) were down-regulated by rapamycin at 48 h both in whole and small-for-size grafts. Consistently, mRNA levels and protein expression of Rho and ROCK I were decreased by rapamycin during the 48 h after liver transplantation. In conclusion, rapamycin attenuated graft injury in a cirrhotic rat liver transplantation model by suppression of hepatic stellate cell activation, related to down-regulation of Rho-ROCK-VEGF pathway. To investigate whether rapamycin could attenuate hepatic I/R injury in a cirrhotic rat liver transplantation model, we applied a rat orthotopic liver transplantation model using 100% or 50% of liver grafts and cirrhotic recipients. Rapamycin was given (0.2 mg/kg, i.v.) at 30 min before graft harvesting in the donor and 24 h before operation, 30 min before total hepatectomy and immediately after reperfusion in the recipient. Rapamycin significantly improved small-for-size graft survival from 8.3% (1/12) to 66.7% (8/12) (p = 0.027). It also increased 7-day survival rates of whole grafts (58.3%[7/12] vs. 83.3%[10/12], p = 0.371). Activation of hepatic stellate cells was mainly found in small-for-size grafts during the first 7 days after liver transplantation. Rapamycin suppressed expression of smooth muscle actin, which is a marker of hepatic stellate cell activation, especially in small-for-size grafts. Intragraft protein expression and mRNA levels of vascular endothelial growth factor (VEGF) were down-regulated by rapamycin at 48 h both in whole and small-for-size grafts. Consistently, mRNA levels and protein expression of Rho and ROCK I were decreased by rapamycin during the 48 h after liver transplantation. In conclusion, rapamycin attenuated graft injury in a cirrhotic rat liver transplantation model by suppression of hepatic stellate cell activation, related to down-regulation of Rho-ROCK-VEGF pathway. Living donor liver transplantation (LDLT) provides an early and the most effective treatment to rescue patients suffering from end-stage liver disease with severe cirrhosis. However, the problem of small-for-size liver graft injury generated from LDLT remains to be an obstacle. Pharmaceutical therapies for small-for-size liver graft injury have been widely investigated in animal models based on its distinct mechanism (1Man K Lo CM Ng IO et al.Liver transplantation in rats using small-for-size grafts: A study of hemodynamic and morphological changes..Arch Surg. 2001; 136: 280-285Crossref PubMed Scopus (178) Google Scholar, 2Man K Lo CM Lee TK Li XL Ng IO Fan ST. Intragraft gene expression profiles by cDNA microarray in small-for-size liver grafts..Liver Transpl. 2003; 9: 425-432Crossref PubMed Scopus (58) Google Scholar, 3Man K Fan ST Lo CM et al.Graft injury in relation to graft size in right lobe live donor liver transplantation: A study of hepatic sinusoidal injury in correlation with portal hemodynamics and intragraft gene expression..Ann Surg. 2003; 237: 256-264Crossref PubMed Google Scholar, 4Man K Lee TK Liang TB et al.FK 409 ameliorates small-for-size liver graft injury by attenuation of portal hypertension and down-regulation of Egr-1 pathway..Ann Surg. 2004; 240: 159-168Crossref PubMed Scopus (66) Google Scholar, 5Zhao Y Man K Lo CM et al.Attenuation of small-for-size liver graft injury by FTY720: Significance of cell-survival Akt signaling pathway..Am J Transplant. 2004; 4: 1399-1407Abstract Full Text Full Text PDF PubMed Scopus (38) Google Scholar). However, previous rat liver transplantation models used for the studies of drug treatment mainly used rats with normal liver as recipients. Theoretically, the recipient rats with cirrhotic liver after being implanted with small-for-size grafts will be prone to develop graft failure probably because of more severe systemic inflammatory responses. To study the efficacy of the potential drug therapy precisely for liver graft injury, especially in small-for-size grafts, and to explore the potential clinical application, it is necessary to establish a rat liver transplantation model using cirrhotic recipients to mimic the clinical situation. Rho-ROCK signaling pathway not only plays an important role in hepatic ischemia-reperfusion injury (6Yee HF. Rho directs activation-associated changes in rat hepatic stellate cell morphology via regulation of the actin cytoskeleton..Hepatology. 1998; 28: 843-850Crossref PubMed Scopus (62) Google Scholar,7Kato M Iwamoto H Higashi N et al.Role of Rho small GTP binding protein in the regulation of actin cytoskeleton in hepatic stellate cells..J Hepatol. 1999; 31: 91-99Abstract Full Text Full Text PDF PubMed Scopus (45) Google Scholar) but it is also involved in liver fibrosis via activation of hepatic stellate cells (8Murata T Arii S Nakamura T et al.Inhibitory effect of Y-27632, a ROCK inhibitor, on progression of rat liver fibrosis in association with inactivation of hepatic stellate cells..J Hepatol. 2001; 35: 474-481Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar,9Tada S Iwamoto H Nakamuta M et al.A selective ROCK inhibitor, Y27632, prevents dimethylnitrosamine-induced hepatic fibrosis in rats..J Hepatol. 2001; 34: 529-536Abstract Full Text Full Text PDF PubMed Scopus (86) Google Scholar). Treatment targeting on ROCK signaling was effective to prevent ischemia-reperfusion-induced hepatic microcirculatory disruption by inhibiting stellate cell contraction (10Mizunuma K Ohdan H Tashiro H Fudaba Y Ito H Asahara T. Prevention of ischemia-reperfusion-induced hepatic microcirculatory disruption by inhibiting stellate cell contraction using rock inhibitor..Transplantation. 2003; 75: 579-586Crossref PubMed Scopus (26) Google Scholar). Rapamycin, a macrolide immuno-suppressant, which has been routinely used in clinical transplantation, has been demonstrated its benefit for the treatment of ischemia-reperfusion injury in hypertensive rat (11Viklicky O Bohmova R Ouyang N et al.Effect of sirolimus on renal ischaemia/reperfusion injury in normotensive and hypertensive rats..Transpl Int. 2004; 17: 432-441PubMed Google Scholar,12Bohmova R Honsova E Heemann U et al.Effect of sirolimus on ischemia/reperfusion injury in transgenic hypertensive rat..Transplant Proc. 2002; 34: 3051-3052Crossref PubMed Scopus (3) Google Scholar). Furthermore, the inhibitory action of rapamycin on Rho expression by a previous animal study potentiated its benefit for attenuation of hepatic ischemia-reperfusion injury (13Guerin P Sauzeau V Rolli-Derkinderen M et al.Stent implantation activates RhoA in human arteries: Inhibitory effect of rapamycin..J Vasc Res. 2005; 42: 21-28Crossref PubMed Scopus (26) Google Scholar). On the other hand, rapamycin can also inhibit hepatic stellate cell proliferation in vitro and limit liver fibrosis in vivo (14Zhu J Wu J Frizell E et al.Rapamycin inhibits hepatic stellate cell proliferation in vitro and limits fibrogenesis in an in vivo model of liver fibrosis..Gastroenterology. 1999; 117: 1198-1204Abstract Full Text Full Text PDF PubMed Scopus (198) Google Scholar). Therefore, rapamycin might be a potential therapy for small-for-size liver graft injury in a cirrhotic recipient. In the current study, we aimed to investigate the protective effect of rapamycin on liver graft injury in a rat liver transplantation model using cirrhotic recipients implanted with whole or small-for-size grafts. We also explored the potential mechanism involving Rho-ROCK-vascular endothelial growth factor (VEGF) signaling pathway and hepatic stellate cell activation during the early phase after liver transplantation. Normal male Sprague-Dawley rats (body weight: 250–300 g) were used as donors and male Sprague-Dawley rats (body weight: 350–450 g) with cirrhotic liver as recipients. Liver cirrhosis was induced in the rats (5–6 weeks, body weight: 160–180 g) by subcutaneous injection of 50% carbon tetrachloride diluted with olive oil at a dose of 0.2 mL/100 g of body weight twice a week for 8 weeks. The rats were housed in a standard animal laboratory with free activity and access to water and chow. They were kept under constant environment conditions with a 12-h light-dark cycle. All operations were performed under clean conditions. The study protocol was approved by the Committee on the Use of Live Animals in Teaching and Research, Faculty of Medicine, the University of Hong Kong. The experiment was conducted in four groups of rats: (1) control group using whole graft (n = 32); (2) rapamycin treatment group using whole graft (n = 32); (3) control group using small-for-size graft (n = 32) and (4) rapamycin treatment group using small-for-size graft (n = 32). A rat model of nonarterialized orthotopic liver transplantation without veno-venous bypass was used. Lobe ligation technique was used to reduce the graft size on the backtable. The median lobe, right lobe and caudate lobe of the liver were selected to be the graft and the median ratio of the graft weight to the recipient liver weight (graft weight ratio) was 59% (range 48–67%). The graft was stored in cold saline with a target cold ischemic time of 60 min. Rapamycin (molecular weight 914.2 Da) was kindly provided by Wyeth Pharmaceuticals (Princeton, NJ). In the rapamycin treatment group, rapamycin dissolved in propylene glycol and diluted by normal saline was given at the dose of 0.2 mg/kg intravenously at 30 min before graft harvesting in the donor and 24 h before liver transplantation, 30 min before total hepatectomy and immediately after reperfusion in the recipient. The same amount of propylene glycol diluted in normal saline was given in the control group at the same time points. Twelve rats in the rapamycin treatment groups and the control groups were used for survival study. Rats that had lived for more than 7 days after transplantation were considered as survivors. Liver tissues and blood were sampled at 6, 24 and 48 h after reperfusion for hepatic gene detection, morphologic examination and liver function tests. Liver tissues were also sampled at day 4 after liver transplantation for detection of hepatic stellate cell activation. Five rats were included at each time point for the treatment groups and control groups, respectively. The rats survived at day 7 after liver transplantation in the treatment and control groups were also sampled for histological examination. Blood samples were collected from the recipients at 6, 24 and 48 h after reperfusion for the measurement of serum aspartate aminotransferase (AST) and total bilirubin levels (Hitachi 747 Automatic Analyzer, Boehringer Mannheim Gmbh, Mannheim, Germany). Western-blot assay was modified using the previous method. Briefly, the whole protein of the rat liver was extracted using the cell lysis buffer (Cell Signaling Technology, Beverly, MA) added with 1 mM of PMSF. The concentration of protein in each sample was quantified by the Bradford method (Bio-Rad, Hercules, CA). Fifty micrograms of proteins were size-separated in 12% SDS-PAGE and transferred to nitrocellulose membrane (Amersham, Little Chalfont, UK). Blots were incubated with primary antibodies overnight at 4°C. HRP-conjugated secondary antibodies (Amersham, Buckinghamshire, UK) were incorporated with primary antibodies for 1 h at room temperature. The immunoreactive signals were visualized by ECL Plus Western blotting detection reagents (Amersham, Little Chalfont, UK) and quantified by scanning densitometry (Syngene, Cambridge, UK). Anti-RhoA Ab was commercially available from Cytoskeleton (Denver, CO) and Anti-ROCK I Ab was purchased from BD Biosciences (Franklin Lakes, NJ). Anti-VEGF Ab was purchased from Santa Cruz Biotechnology (Santa Cruz, CA) Plasma VEGF levels were detected by ELISA using commercial available mouse VEGF Quantikine ELISA Kit from R&D Systems (Minneapolis, MN) at 6, 24 and 48 h after liver transplantation. Liver biopsies were stored at –80°C until total RNA extraction. The total RNA was extracted using Rneasy Midi Kit (Qiagen, GmbH, Hilden, Germany). About 0.5 μg total RNA from each sample was used to perform reverse transcription reaction using TaqMan Reverse Transcription Reagents (3Man K Fan ST Lo CM et al.Graft injury in relation to graft size in right lobe live donor liver transplantation: A study of hepatic sinusoidal injury in correlation with portal hemodynamics and intragraft gene expression..Ann Surg. 2003; 237: 256-264Crossref PubMed Google Scholar) (Applied Biosystems, Foster City, CA). Reverse transcription product (1 μL) was used to perform real-time quantitative RT-PCR using TaqMan Core Reagent Kit (Applied Biosystems) by the ABI PRISM 7700 Sequence Detection System (Applied Biosystems). The probes and primers of ROCK and VEGF were commercially available from Applied Biosystems Limited. The TaqMan Ribosomal RNA Control Reagent (18S RNA probe and primer pair, Applied Biosystems) was used for internal control in the same PCR plate well to normalize the target gene amplification copies. All samples were detected in triplicate, and the readings from each sample and its internal control were used to calculate the gene expression level. After normalization with the internal control, the gene expression levels at different time points after liver transplantation were expressed as the folds of the level of the normal liver. The paraffin sections of the liver biopsies were immunochemically stained for α-SMA using Dako EnVision™ system (Dako, Glostrup, Denmark). In brief, after de-paraffinization, endogenous peroxidase activity was quenched by immersing the sections for 30 min in absolute methanol containing 0.3% H2O2 . The sections were processed to unmask the antigens by a conventional microwave oven heating in 10 mM citric acid buffer (pH. 6.0) for 12 min. The sections were then treated with 10% normal goat serum for 30 min to reduce the background staining, followed by treatment of α-SMA primary antibodies (DakoCytomation, Denmark) at 4°C overnight. After washing, the sections were incubated with EnVision™ secondary antibody (anti-mouse) for 30 min at room temperature and then visualized with chromogenic substrate solution for 2 min. The slides were examined under light microscope. Continuous variables were expressed as median and range. Mann-Whitney U-test was used for statistical comparison. Chi-square test was used to compare 7-day survival rates. Significance was defined as p < 0.05. Calculations were made with the help of SPSS computer software (SPSS Inc., Chicago, IL). Rapamycin significantly improved the small-for-size graft survival from 8.3% (1/12) to 66.7% (8/12) (p = 0.027). It also potentially increased the 7-day survival rates of the whole grafts from 58.3% (7/12) to 83.3% (10/12). However, there was no statistical difference (p = 0.371). Rapamycin treatment significantly decreased the serum levels of alanine aminotransferase (ALT) and/or aspartate aminotransferase during the first 48 h after liver transplantation both in the whole graft and small-for-size graft groups (Figure 1) (Whole graft group: ALT-24 h: 561 [5437–610] vs. 1031 [962–1089] U/L, p = 0.027; ALT-48 h; 326 [135–553] vs. 1084 [1056–1736], p = 0.021; AST-48 h: 730 [380–2074] vs. 2249 [2213–2897] U/L, p = 0.021; Small-for-size graft group: AST-6 h: 1062 [1032–1375] vs. 1717 [1594–1789], p = 0.021). The peak levels of serum ALT and AST presented early at 6 h after reperfusion in the small-for-size graft group, whereas they occurred at 48 h after reperfusion in the whole graft group. However, there was no statistical difference of total bilirubin between the treatment and control groups (Figure 1). Intragraft gene expression levels of ROCK and VEGF by real-time RT-PCR were significantly down-regulated by rapamycin treatment both in the whole graft and small-for-size liver graft groups during the first 48 h after reperfusion (Figure 2). The gene expression pattern of ROCK was similar between the whole graft and small-for-size graft groups. The mRNA levels of ROCK reached to the peak level of more than 7 folds of normal liver in the control groups early at 6 h after reperfusion. The highest mRNA level of VEGF without treatment was found early at 6 h after liver transplantation in the small-for-size graft groups. However, it reached the peak level of about 3 folds of normal liver in the control group late at 48 h after reperfusion. Consistently, the intragraft protein levels of RhoA, ROCK and VEGF by Western blot were also down-regulated by rapamycin both in the whole graft and small-for-size graft groups (Figure 3). Different from the intragraft expression of VEGF, a significant higher level of circulatory VEGF detected by ELISA was only found in the small-for-size graft group at 24 h after reperfusion (Figure 4). Rapamycin treatment remarkably decreased the systemic VEGF expression. Upon the down-regulation of Rho-ROCK-VEGF signaling pathway by rapamycin, the expression of smooth muscle actin, which is a maker of hepatic stellate cells, was inhibited starting at 24 h after liver transplantation both in the whole graft and small-for-size graft groups (Figure 5). The progression of the activation of hepatic stellate cells was consistent between the whole graft and small-for-size graft groups during the first week after liver transplantation. Without the treatment, the peak of the hepatic stellate cell activation was at day 4 after liver transplantation. Even at day 7 after liver transplantation, a lot of activated hepatic stellate cells were still found in the control groups. In the rat transplantation using normal recipients, a few hepatic stellate cells were activated in the whole graft or small-for-size liver graft during the first 7 days after operation (data no shown).Figure 3Intragraft protein expression of RhoA, ROCK and VEGF in whole graft group (I) and small-for-size group (II) at different time points after reperfusion by Western blot.View Large Image Figure ViewerDownload Hi-res image Download (PPT)Figure 4Plasma VEGF expression in whole graft group and small-for-size group at different time points after reperfusion by ELISA.*p < 0.05 compared to small-for-size group after rapamycin treatment.View Large Image Figure ViewerDownload Hi-res image Download (PPT)Figure 5Hepatic stellate cell activation by α-SMA staining in whole graft group (I) and small-for-size group (II).a: rapamycin treatment group; b: control group.View Large Image Figure ViewerDownload Hi-res image Download (PPT) The degree of the liver fibrosis by Massoon’s staining of the recipients was comparable between the treatment and control groups (Figure 6 A). The fibrotic tissue was well developed after 8 week’s CCL4 injection. As for the hepatic architecture after liver transplantation (Figure 6 B), the histological pattern of graft injury was quite similar between the rats implanted with whole graft (Figure 6 BI) and small-for-size graft (Figure 6 BII). Interestingly, no obviously severe histological damage was found in the small-for-size liver grafts compared to the whole grafts. Usually, sinusoidal congestion, patchy necrosis and slightly lymphocytes infiltration were presented at early time points (24 and 48 h) after liver transplantation. Progressive damage was characterized by lymphocytes infiltration and focal necrosis at day 4 after liver transplantation. In the rats survived at day 7 after liver transplantation in the control groups, their liver parenchyma lost normal structure accompanied with massive infiltration around the portal pedicle and hepatic sinusoids. The well preservation of hepatic architecture by rapamycin was found in the treatment groups. The liver structure was almost normal in the whole graft group at different time points after liver transplantation with rapamycin treatment. However, lymphocyte infiltration around the central vein was found in the treatment group implanted with small-for-size liver graft at day 7 after liver transplantation. This study first successfully established a rat liver transplantation model using cirrhotic recipients. It provided an ideal animal model mimicking clinical transplantation for patients with cirrhotic liver. The current pharmaceutical therapy by immuno-suppressant rapamycin demonstrated its benefit for attenuation of graft injury, especially the graft in small-for-size, during the early phase after liver transplantation via down-regulation of Rho-ROCK-VEGF pathway. Rho-ROCK signaling activated by the shear stress resulted from portal hemodynamic force at the acute phase after liver transplantation played an important role in hepatic ischemia-reperfusion injury (15Tzima E Del Pozo MA Kiosses WB et al.Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression..EMBO J. 2002; 21: 6791-6800Crossref PubMed Scopus (296) Google Scholar,16Ikeda F Terajima H Shimahara Y Kondo T Yamaoka Y. Reduction of hepatic ischemia/reperfusion-induced injury by a specific ROCK/Rho kinase inhibitor Y-27632..J Surg Res. 2003; 109: 155-160Abstract Full Text Full Text PDF PubMed Scopus (25) Google Scholar). Induction of Rho-ROCK expression subsequently promoted hepatic stellate cell activation (8Murata T Arii S Nakamura T et al.Inhibitory effect of Y-27632, a ROCK inhibitor, on progression of rat liver fibrosis in association with inactivation of hepatic stellate cells..J Hepatol. 2001; 35: 474-481Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar,9Tada S Iwamoto H Nakamuta M et al.A selective ROCK inhibitor, Y27632, prevents dimethylnitrosamine-induced hepatic fibrosis in rats..J Hepatol. 2001; 34: 529-536Abstract Full Text Full Text PDF PubMed Scopus (86) Google Scholar), which led to sinusoidal constriction and then microcirculatory disruption (17Thimgan MS Yee Jr, HF Quantitation of rat hepatic stellate cell contraction: Stellate cells’ contribution to sinusoidal resistance..Am J Physiol. 1999; 277: G137-G143PubMed Google Scholar). Moreover, the early up-regulation of VEGF potentiated the progressive hepatic stellate cell activation (18Yoshiji H Kuriyama S Yoshii J et al.Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis..Gut. 2003; 52: 1347-1354Crossref PubMed Scopus (261) Google Scholar). The significant down-regulation of Rho-ROCK-VEGF by rapamycin at gene and protein levels was found in both the whole graft and small-for-size graft groups. Although the peak expression of VEGF was found earlier in the small-for-size graft group, there was no obvious difference of hepatic stellate cell activation between the two groups during the first week after liver transplantation. The efficacy of the suppression of hepatic stellate cell by rapamycin was comparable between the whole graft and small-for-size graft groups. The significant improvement of liver function and protection of hepatic architecture were also found in the treatment groups. Remarkable down-regulation of Rho-ROCK by rapamycin not only inhibited integrin-mediated leukocyte adhesion to the vascular endothelium, which led to an increase of vascular resistance and microcirculatory disturbance (19Braide M Amundson B Chien S Bagge U. Quantitative studies on the influence of leukocytes on the vascular resistance in a skeletal muscle preparation..Microvasc Res. 1984; 27: 331-352Crossref PubMed Scopus (102) Google Scholar) but also attenuated hepatic stellate cell contraction and portal pressure increase induced by endothelin-1 (20Kawada N Seki S Kuroki T Kaneda K. ROCK inhibitor Y-27632 attenuates stellate cell contraction and portal pressure increase induced by endothelin-1..Biochem Biophys Res Commun. 1999; 266: 296-300Crossref PubMed Scopus (80) Google Scholar). Furthermore, inhibition of Rho-ROCK signaling was important to suppress the activation of focal adhesion kinase (21Torsoni AS Marin TM Velloso LA Franchini KG. Rhoa/ROCK signaling is critical to FAK activation by cycling stretch in cardiac myocytes..Am J Physiol Heart Circ Physiol. 2005; 289: 1488-1496Crossref PubMed Scopus (116) Google Scholar), which was found over expressed in small-for-size liver graft (2Man K Lo CM Lee TK Li XL Ng IO Fan ST. Intragraft gene expression profiles by cDNA microarray in small-for-size liver grafts..Liver Transpl. 2003; 9: 425-432Crossref PubMed Scopus (58) Google Scholar). On the other hand, down-regulation of VEGF by rapamycin also inhibited the activation of hepatic stellate cell, which was related to hepatic sinusoidal constriction (17Thimgan MS Yee Jr, HF Quantitation of rat hepatic stellate cell contraction: Stellate cells’ contribution to sinusoidal resistance..Am J Physiol. 1999; 277: G137-G143PubMed Google Scholar,18Yoshiji H Kuriyama S Yoshii J et al.Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis..Gut. 2003; 52: 1347-1354Crossref PubMed Scopus (261) Google Scholar). Therefore, rapamycin protected liver graft from acute phase injury in a cirrhotic model mainly through the improvement of hepatic microcirculation by attenuation of cell adhesion and sinusoidal constriction resulted from shear stress. On the other hand, the activation of Rho-ROCK was involved in the regulation of the cytoskeletal reorganization, such as stress fiber formation, which induced tumor cell dissemination and angiogenesis then promoted cancer invasion (2Man K Lo CM Lee TK Li XL Ng IO Fan ST. Intragraft gene expression profiles by cDNA microarray in small-for-size liver grafts..Liver Transpl. 2003; 9: 425-432Crossref PubMed Scopus (58) Google Scholar,22Wilkinson S Paterson HF Marshall CJ. Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion..Nat Cell Biol. 2005; 7: 255-261Crossref PubMed Scopus (315) Google Scholar,23Croft DR Sahai E Mavria G et al.Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis..Cancer Res. 2004; 64: 8994-9001Crossref PubMed Scopus (155) Google Scholar). The over expression of VEGF and massive activation of hepatic stellate cell further accelerated angiogenesis (24Corpechot C Barbu V Wendum D et al.Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis..Hepatology. 2002; 35: 1010-1021Crossref PubMed Scopus (411) Google Scholar). Suppression of Rho-ROCK signaling has been demonstrated to be able to inhibit intrahepatic metastasis of hepatocellular carcinoma (25Takamura M Sakamoto M Genda T Ichida T Asakura H Hirohashi S. Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632..Hepatology. 2001; 33: 577-581Crossref PubMed Scopus (113) Google Scholar). In addition, the anti-cancer effect of rapamycin was also confirmed by its anti-angiogenesis function via down-regulation of VEGF (26Guba M Von BP Steinbauer M et al.Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: Involvement of vascular endothelial growth factor..Nat Med. 2002; 8: 128-135Crossref PubMed Scopus (1578) Google Scholar). Taken together, the significance of down-regulation of Rho-ROCK-VEGF signaling by rapamycin was not only important in rescuing liver grafts from acute phase injury in a cirrhotic recipient, but might also be critical in preventing late phase liver tumor recurrence or metastasis in liver transplantation for liver cancer patients. The application of rapamycin might be a double-edged sword because of its dual effect on acute phase graft injury as well as on cancer cell migration and invasion in liver transplantation for liver cancer patients with cirrhotic liver. However, to explore the potential clinical application of rapamycin for liver cancer recurrence after liver transplantation, further related studies about the precise mechanism should be conducted. The rat liver transplantation model in the current study is a nonarterialized transplantation model. The association between the use of rapamycin and the development of early hepatic artery thrombosis in clinical studies is a major concern. This would prohibit its potential application to prevent early graft injury after liver transplantation. Nonetheless, our study provided important information regarding the mechanism of the graft injury in a cirrhotic rat liver transplantation model. The pathway identified may become the potential therapeutic target of the other new drugs in future. This study will open a new window for the pharmaceutical therapy of liver graft injury targeting at Rho-ROCK-VEGF pathway. In summary, rapamycin attenuated graft injury in a cirrhotic rat liver transplantation model in association with suppression of smooth muscle actin expression, which is a marker for hepatic stellate cell activation related to down-regulation of Rho-ROCK-VEGF pathway, which might be a potential target for the prevention of tumor recurrence and metastasis after liver transplantation for liver cancer patients. This study was supported by the Seed Funding for Basic Research and Sun C.Y. Research Foundation for Hepatobiliary and Pancreatic Surgery of the University of Hong Kong. RetractionAmerican Journal of TransplantationVol. 15Issue 10PreviewRetraction: ‘Rapamycin Attenuates Liver Graft Injury in Cirrhotic Recipient—The Significance of Down-Regulation of Rho-ROCK-VEGF Pathway’ by K. Man, M. Su, K.T. Ng, C.M. Lo, Y. Zhao, J.W. Ho, C.K. Sun, T.K. Lee, and S.T. Fan Full-Text PDF Open Archive" @default.
- W2083752743 created "2016-06-24" @default.
- W2083752743 creator A5002375643 @default.
- W2083752743 creator A5004562300 @default.
- W2083752743 creator A5007204095 @default.
- W2083752743 creator A5012136163 @default.
- W2083752743 creator A5026715611 @default.
- W2083752743 creator A5033103857 @default.
- W2083752743 creator A5057955931 @default.
- W2083752743 creator A5060325762 @default.
- W2083752743 creator A5082605583 @default.
- W2083752743 date "2006-04-01" @default.
- W2083752743 modified "2023-09-30" @default.
- W2083752743 title "Retracted: Rapamycin Attenuates Liver Graft Injury in Cirrhotic Recipient—The Significance of Down-Regulation of Rho-ROCK-VEGF Pathway" @default.
- W2083752743 cites W1963780296 @default.
- W2083752743 cites W1969569111 @default.
- W2083752743 cites W1978803498 @default.
- W2083752743 cites W1996438825 @default.
- W2083752743 cites W2000191817 @default.
- W2083752743 cites W2001213102 @default.
- W2083752743 cites W2001558489 @default.
- W2083752743 cites W2005045872 @default.
- W2083752743 cites W2006721929 @default.
- W2083752743 cites W2018726322 @default.
- W2083752743 cites W2023656577 @default.
- W2083752743 cites W2025263018 @default.
- W2083752743 cites W2026351725 @default.
- W2083752743 cites W2030405140 @default.
- W2083752743 cites W2039198415 @default.
- W2083752743 cites W2066791154 @default.
- W2083752743 cites W2091393830 @default.
- W2083752743 cites W2096753161 @default.
- W2083752743 cites W2119035705 @default.
- W2083752743 cites W2125203230 @default.
- W2083752743 cites W2126270623 @default.
- W2083752743 cites W2129267942 @default.
- W2083752743 cites W2153136842 @default.
- W2083752743 cites W2156121832 @default.
- W2083752743 doi "https://doi.org/10.1111/j.1600-6143.2005.01231.x" @default.
- W2083752743 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16539626" @default.
- W2083752743 hasPublicationYear "2006" @default.
- W2083752743 type Work @default.
- W2083752743 sameAs 2083752743 @default.
- W2083752743 citedByCount "15" @default.
- W2083752743 countsByYear W20837527432012 @default.
- W2083752743 countsByYear W20837527432014 @default.
- W2083752743 countsByYear W20837527432015 @default.
- W2083752743 countsByYear W20837527432018 @default.
- W2083752743 crossrefType "journal-article" @default.
- W2083752743 hasAuthorship W2083752743A5002375643 @default.
- W2083752743 hasAuthorship W2083752743A5004562300 @default.
- W2083752743 hasAuthorship W2083752743A5007204095 @default.
- W2083752743 hasAuthorship W2083752743A5012136163 @default.
- W2083752743 hasAuthorship W2083752743A5026715611 @default.
- W2083752743 hasAuthorship W2083752743A5033103857 @default.
- W2083752743 hasAuthorship W2083752743A5057955931 @default.
- W2083752743 hasAuthorship W2083752743A5060325762 @default.
- W2083752743 hasAuthorship W2083752743A5082605583 @default.
- W2083752743 hasBestOaLocation W20837527431 @default.
- W2083752743 hasConcept C126322002 @default.
- W2083752743 hasConcept C126894567 @default.
- W2083752743 hasConcept C167734588 @default.
- W2083752743 hasConcept C2776637226 @default.
- W2083752743 hasConcept C2779609443 @default.
- W2083752743 hasConcept C2911091166 @default.
- W2083752743 hasConcept C71924100 @default.
- W2083752743 hasConceptScore W2083752743C126322002 @default.
- W2083752743 hasConceptScore W2083752743C126894567 @default.
- W2083752743 hasConceptScore W2083752743C167734588 @default.
- W2083752743 hasConceptScore W2083752743C2776637226 @default.
- W2083752743 hasConceptScore W2083752743C2779609443 @default.
- W2083752743 hasConceptScore W2083752743C2911091166 @default.
- W2083752743 hasConceptScore W2083752743C71924100 @default.
- W2083752743 hasIssue "4" @default.
- W2083752743 hasLocation W20837527431 @default.
- W2083752743 hasLocation W20837527432 @default.
- W2083752743 hasOpenAccess W2083752743 @default.
- W2083752743 hasPrimaryLocation W20837527431 @default.
- W2083752743 hasRelatedWork W1991176685 @default.
- W2083752743 hasRelatedWork W2007536964 @default.
- W2083752743 hasRelatedWork W2314999510 @default.
- W2083752743 hasRelatedWork W2320753185 @default.
- W2083752743 hasRelatedWork W2354901326 @default.
- W2083752743 hasRelatedWork W2372353835 @default.
- W2083752743 hasRelatedWork W2376460618 @default.
- W2083752743 hasRelatedWork W2392413698 @default.
- W2083752743 hasRelatedWork W2431095629 @default.
- W2083752743 hasRelatedWork W3036143884 @default.
- W2083752743 hasVolume "6" @default.
- W2083752743 isParatext "false" @default.
- W2083752743 isRetracted "false" @default.
- W2083752743 magId "2083752743" @default.
- W2083752743 workType "article" @default.