Matches in SemOpenAlex for { <https://semopenalex.org/work/W2084089095> ?p ?o ?g. }
- W2084089095 endingPage "747" @default.
- W2084089095 startingPage "731" @default.
- W2084089095 abstract "For the problem of variable selection for the normal linear model, selection criteria such as aic, Cp , bic and ric have fixed dimensionality penalties. Such criteria are shown to correspond to selection of maximum posterior models under implicit hyperparameter choices for a particular hierarchical Bayes formulation. Based on this calibration, we propose empirical Bayes selection criteria that use hyperparameter estimates instead of fixed choices. For obtaining these estimates, both marginal and conditional maximum likelihood methods are considered. As opposed to traditional fixed penalty criteria, these empirical Bayes criteria have dimensionality penalties that depend on the data. Their performance is seen to approximate adaptively the performance of the best fixed‐penalty criterion across a variety of orthogonal and nonorthogonal set‐ups, including wavelet regression. Empirical Bayes shrinkage estimators of the selected coefficients are also proposed." @default.
- W2084089095 created "2016-06-24" @default.
- W2084089095 creator A5002177720 @default.
- W2084089095 creator A5013532156 @default.
- W2084089095 date "2000-12-01" @default.
- W2084089095 modified "2023-10-09" @default.
- W2084089095 title "Calibration and empirical Bayes variable selection" @default.
- W2084089095 cites W110902330 @default.
- W2084089095 cites W1506069954 @default.
- W2084089095 cites W1520675313 @default.
- W2084089095 cites W171292237 @default.
- W2084089095 cites W191129667 @default.
- W2084089095 cites W1985593448 @default.
- W2084089095 cites W1985804706 @default.
- W2084089095 cites W1986783130 @default.
- W2084089095 cites W1999974018 @default.
- W2084089095 cites W2007069447 @default.
- W2084089095 cites W2033149996 @default.
- W2084089095 cites W2037083183 @default.
- W2084089095 cites W2051175277 @default.
- W2084089095 cites W2054699810 @default.
- W2084089095 cites W2057331441 @default.
- W2084089095 cites W2058815839 @default.
- W2084089095 cites W2079356438 @default.
- W2084089095 cites W2083394664 @default.
- W2084089095 cites W2100471135 @default.
- W2084089095 cites W2110065044 @default.
- W2084089095 cites W2129347085 @default.
- W2084089095 cites W2140667604 @default.
- W2084089095 cites W2158940042 @default.
- W2084089095 cites W2166624680 @default.
- W2084089095 cites W2168175751 @default.
- W2084089095 cites W3008617006 @default.
- W2084089095 cites W3214323364 @default.
- W2084089095 doi "https://doi.org/10.1093/biomet/87.4.731" @default.
- W2084089095 hasPublicationYear "2000" @default.
- W2084089095 type Work @default.
- W2084089095 sameAs 2084089095 @default.
- W2084089095 citedByCount "464" @default.
- W2084089095 countsByYear W20840890952012 @default.
- W2084089095 countsByYear W20840890952013 @default.
- W2084089095 countsByYear W20840890952014 @default.
- W2084089095 countsByYear W20840890952015 @default.
- W2084089095 countsByYear W20840890952016 @default.
- W2084089095 countsByYear W20840890952017 @default.
- W2084089095 countsByYear W20840890952018 @default.
- W2084089095 countsByYear W20840890952019 @default.
- W2084089095 countsByYear W20840890952020 @default.
- W2084089095 countsByYear W20840890952021 @default.
- W2084089095 countsByYear W20840890952022 @default.
- W2084089095 countsByYear W20840890952023 @default.
- W2084089095 crossrefType "journal-article" @default.
- W2084089095 hasAuthorship W2084089095A5002177720 @default.
- W2084089095 hasAuthorship W2084089095A5013532156 @default.
- W2084089095 hasBestOaLocation W20840890952 @default.
- W2084089095 hasConcept C105795698 @default.
- W2084089095 hasConcept C107673813 @default.
- W2084089095 hasConcept C111030470 @default.
- W2084089095 hasConcept C11413529 @default.
- W2084089095 hasConcept C142291917 @default.
- W2084089095 hasConcept C148483581 @default.
- W2084089095 hasConcept C154945302 @default.
- W2084089095 hasConcept C185429906 @default.
- W2084089095 hasConcept C207201462 @default.
- W2084089095 hasConcept C33923547 @default.
- W2084089095 hasConcept C41008148 @default.
- W2084089095 hasConcept C81917197 @default.
- W2084089095 hasConcept C8642999 @default.
- W2084089095 hasConcept C93959086 @default.
- W2084089095 hasConceptScore W2084089095C105795698 @default.
- W2084089095 hasConceptScore W2084089095C107673813 @default.
- W2084089095 hasConceptScore W2084089095C111030470 @default.
- W2084089095 hasConceptScore W2084089095C11413529 @default.
- W2084089095 hasConceptScore W2084089095C142291917 @default.
- W2084089095 hasConceptScore W2084089095C148483581 @default.
- W2084089095 hasConceptScore W2084089095C154945302 @default.
- W2084089095 hasConceptScore W2084089095C185429906 @default.
- W2084089095 hasConceptScore W2084089095C207201462 @default.
- W2084089095 hasConceptScore W2084089095C33923547 @default.
- W2084089095 hasConceptScore W2084089095C41008148 @default.
- W2084089095 hasConceptScore W2084089095C81917197 @default.
- W2084089095 hasConceptScore W2084089095C8642999 @default.
- W2084089095 hasConceptScore W2084089095C93959086 @default.
- W2084089095 hasIssue "4" @default.
- W2084089095 hasLocation W20840890951 @default.
- W2084089095 hasLocation W20840890952 @default.
- W2084089095 hasOpenAccess W2084089095 @default.
- W2084089095 hasPrimaryLocation W20840890951 @default.
- W2084089095 hasRelatedWork W2083677154 @default.
- W2084089095 hasRelatedWork W2089519699 @default.
- W2084089095 hasRelatedWork W2188650561 @default.
- W2084089095 hasRelatedWork W2825391699 @default.
- W2084089095 hasRelatedWork W3034774545 @default.
- W2084089095 hasRelatedWork W3102221624 @default.
- W2084089095 hasRelatedWork W3104584085 @default.
- W2084089095 hasRelatedWork W3137735170 @default.
- W2084089095 hasRelatedWork W4237728685 @default.
- W2084089095 hasRelatedWork W4287269571 @default.