Matches in SemOpenAlex for { <https://semopenalex.org/work/W2084089315> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2084089315 endingPage "2326" @default.
- W2084089315 startingPage "2323" @default.
- W2084089315 abstract "Restricted accessMoreSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail Cite this article Sell Anne F. 2000Life in the extreme environment at a hydrothermal vent: haemoglobin in a deep-sea copepodProc. R. Soc. Lond. B.2672323–2326http://doi.org/10.1098/rspb.2000.1286SectionRestricted accessLife in the extreme environment at a hydrothermal vent: haemoglobin in a deep-sea copepod Anne F. Sell Anne F. Sell Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA () Google Scholar Find this author on PubMed Search for more papers by this author Anne F. Sell Anne F. Sell Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA () Google Scholar Find this author on PubMed Search for more papers by this author Published:22 November 2000https://doi.org/10.1098/rspb.2000.1286AbstractThis is the first study, to my knowledge, quantifying the respiratory pigment haemoglobin discovered in a deep–sea copepod. Haemoglobin in copepods has previously been documented in only one other species from the deep water of an Italian lake. Specimens of the siphonostomatoid Scotoecetes introrsus Humes were collected during submersible dives at 2500 m depth near a hydrothermal vent at the East Pacific Rise (9°N). The haemoglobin content in the copepod’ haemolymph was 4.3 ± 0.6 μg per individual female (n = 6) and 1.8 ± 0.1 μg per individual male (n = 6). Weight–specific concentrations of haemoglobin were identical for females and males (0.25 ± 0.04 and 0.26 ± 0.02O NTμg per microgram dry weight, respectively). These haemoglobin concentrations are higher than those found in other small crustaceans. Activity of the electron transport system indicated that the respiration rates in S. introrsus (13.7 ± 7.7 μl O2 per milligram dry weight per hour) were similar to those in the shallow–water copepod Acartia tonsa (9.1 ± 1.3 μl O2 per milligram dry weight per hour). It was concluded that the possession of highly concentrated haemoglobin allows S. introrsus to colonize a geologically young, thermally active site such as the vicinity of a hydrothermal vent, despite the prevailing oxygen depletion. Previous ArticleNext Article VIEW FULL TEXT DOWNLOAD PDF FiguresRelatedReferencesDetailsCited by Diaz-Recio Lorenzo C, Bruggen D, Luther G, Gartman A and Gollner S (2021) Copepod assemblages along a hydrothermal stress gradient at diffuse flow habitats within the ABE vent site (Eastern Lau Spreading Center, Southwest Pacific), Deep Sea Research Part I: Oceanographic Research Papers, 10.1016/j.dsr.2021.103532, 173, (103532), Online publication date: 1-Jul-2021. Hourdez S and Jollivet D (2020) Metazoan adaptation to deep-sea hydrothermal vents Life in Extreme Environments, 10.1017/9781108683319.004, (42-67) di Prisco G, Edwards H, Elster J and Huiskes A (2020) Life in Extreme Environments di Prisco G (2020) Extreme environments: responses and adaptation to change Life in Extreme Environments, 10.1017/9781108683319.002, (7-86) Plum C, Pradillon F, Fujiwara Y and Sarrazin J (2017) Copepod colonization of organic and inorganic substrata at a deep-sea hydrothermal vent site on the Mid-Atlantic Ridge, Deep Sea Research Part II: Topical Studies in Oceanography, 10.1016/j.dsr2.2016.06.008, 137, (335-348), Online publication date: 1-Mar-2017. Chambord S, Maris T, Colas F, Van Engeland T, Sossou A, Azémar F, Le Coz M, Cox T, Buisson L, Souissi S, Meire P and Tackx M (2016) Mesozooplankton affinities in a recovering freshwater estuary, Estuarine, Coastal and Shelf Science, 10.1016/j.ecss.2016.04.016, 177, (47-59), Online publication date: 1-Aug-2016. Kim B, Rhee J, Park G, Lee J, Lee Y and Lee J (2011) Cu/Zn- and Mn-superoxide dismutase (SOD) from the copepod Tigriopus japonicus: Molecular cloning and expression in response to environmental pollutants, Chemosphere, 10.1016/j.chemosphere.2011.04.043, 84:10, (1467-1475), Online publication date: 1-Sep-2011. González R, Quiñones R, Quiroga E and Sellanes J (2008) Aerobic and anaerobic enzymatic activities of Calyptogena gallardoi (Vesicomyidae): a clam associated with methane cold seeps off Chile , Journal of the Marine Biological Association of the United Kingdom, 10.1017/S0025315408001872, 88:5, (983-986), Online publication date: 1-Aug-2008. Hourdez S and Lallier F (2006) Adaptations to hypoxia in hydrothermal-vent and cold-seep invertebrates, Reviews in Environmental Science and Bio/Technology, 10.1007/s11157-006-9110-3, 6:1-3, (143-159), Online publication date: 12-Jan-2007. Hourdez S and Lallier F Adaptations to hypoxia in hydrothermal-vent and cold-seep invertebrates Life in Extreme Environments, 10.1007/978-1-4020-6285-8_19, (297-313) Richmond C, Marcus N, Sedlacek C, Miller G and Oppert C (2006) Hypoxia and seasonal temperature: Short-term effects and long-term implications for Acartia tonsa dana, Journal of Experimental Marine Biology and Ecology, 10.1016/j.jembe.2005.07.004, 328:2, (177-196), Online publication date: 1-Jan-2006. Marcus N, Richmond C, Sedlacek C, Miller G and Oppert C (2004) Impact of hypoxia on the survival, egg production and population dynamics of Acartia tonsa Dana, Journal of Experimental Marine Biology and Ecology, 10.1016/j.jembe.2003.09.016, 301:2, (111-128), Online publication date: 1-Apr-2004. Gollner S, Riemer B, Martínez Arbizu P, Le Bris N, Bright M and Unsworth R (2010) Diversity of Meiofauna from the 9°50′N East Pacific Rise across a Gradient of Hydrothermal Fluid Emissions, PLoS ONE, 10.1371/journal.pone.0012321, 5:8, (e12321) MÖller K, St. John M, Temming A, Diekmann R, Peters J, Floeter J, Sell A, Herrmann J, Gloe D, Schmidt J, Hinrichsen H, MÖllmann C and Irigoien X (2020) Predation risk triggers copepod small-scale behavior in the Baltic Sea, Journal of Plankton Research, 10.1093/plankt/fbaa044 Gollner S, Stuckas H, Kihara T, Laurent S, Kodami S, Martinez Arbizu P and Duperron S (2016) Mitochondrial DNA Analyses Indicate High Diversity, Expansive Population Growth and High Genetic Connectivity of Vent Copepods (Dirivultidae) across Different Oceans, PLOS ONE, 10.1371/journal.pone.0163776, 11:10, (e0163776) This Issue22 November 2000Volume 267Issue 1459 Article InformationDOI:https://doi.org/10.1098/rspb.2000.1286PubMed:11413650Published by:Royal SocietyPrint ISSN:0962-8452Online ISSN:1471-2954History: Published online22/11/2000Published in print22/11/2000 License: Citations and impact Keywordsrespirationoxygen depletioncopepoddeep seahaemoglobin Large datasets are available through Proceedings B's partnership with Dryad" @default.
- W2084089315 created "2016-06-24" @default.
- W2084089315 creator A5016398246 @default.
- W2084089315 date "2000-11-22" @default.
- W2084089315 modified "2023-09-25" @default.
- W2084089315 title "Life in the extreme environment at a hydrothermal vent: haemoglobin in a deep-sea copepod" @default.
- W2084089315 cites W1974668954 @default.
- W2084089315 cites W1976514437 @default.
- W2084089315 cites W1978334966 @default.
- W2084089315 cites W1992829653 @default.
- W2084089315 cites W1995125787 @default.
- W2084089315 cites W2013042947 @default.
- W2084089315 cites W2016780406 @default.
- W2084089315 cites W2025616489 @default.
- W2084089315 cites W2028187245 @default.
- W2084089315 cites W2038071236 @default.
- W2084089315 cites W2046779568 @default.
- W2084089315 cites W2057576113 @default.
- W2084089315 cites W2060158445 @default.
- W2084089315 cites W2060721054 @default.
- W2084089315 cites W2082476651 @default.
- W2084089315 cites W2097114498 @default.
- W2084089315 cites W2130552115 @default.
- W2084089315 cites W2142555334 @default.
- W2084089315 cites W2145276188 @default.
- W2084089315 cites W2148752393 @default.
- W2084089315 cites W2158063483 @default.
- W2084089315 cites W2499235298 @default.
- W2084089315 cites W4248927328 @default.
- W2084089315 doi "https://doi.org/10.1098/rspb.2000.1286" @default.
- W2084089315 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1690812" @default.
- W2084089315 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11413650" @default.
- W2084089315 hasPublicationYear "2000" @default.
- W2084089315 type Work @default.
- W2084089315 sameAs 2084089315 @default.
- W2084089315 citedByCount "37" @default.
- W2084089315 countsByYear W20840893152016 @default.
- W2084089315 countsByYear W20840893152017 @default.
- W2084089315 countsByYear W20840893152020 @default.
- W2084089315 countsByYear W20840893152021 @default.
- W2084089315 crossrefType "journal-article" @default.
- W2084089315 hasAuthorship W2084089315A5016398246 @default.
- W2084089315 hasBestOaLocation W20840893152 @default.
- W2084089315 hasConcept C111368507 @default.
- W2084089315 hasConcept C127313418 @default.
- W2084089315 hasConcept C135559958 @default.
- W2084089315 hasConcept C151730666 @default.
- W2084089315 hasConcept C156622251 @default.
- W2084089315 hasConcept C1898230 @default.
- W2084089315 hasConcept C21790881 @default.
- W2084089315 hasConcept C2777235683 @default.
- W2084089315 hasConcept C505870484 @default.
- W2084089315 hasConcept C84766238 @default.
- W2084089315 hasConcept C86803240 @default.
- W2084089315 hasConceptScore W2084089315C111368507 @default.
- W2084089315 hasConceptScore W2084089315C127313418 @default.
- W2084089315 hasConceptScore W2084089315C135559958 @default.
- W2084089315 hasConceptScore W2084089315C151730666 @default.
- W2084089315 hasConceptScore W2084089315C156622251 @default.
- W2084089315 hasConceptScore W2084089315C1898230 @default.
- W2084089315 hasConceptScore W2084089315C21790881 @default.
- W2084089315 hasConceptScore W2084089315C2777235683 @default.
- W2084089315 hasConceptScore W2084089315C505870484 @default.
- W2084089315 hasConceptScore W2084089315C84766238 @default.
- W2084089315 hasConceptScore W2084089315C86803240 @default.
- W2084089315 hasIssue "1459" @default.
- W2084089315 hasLocation W20840893151 @default.
- W2084089315 hasLocation W20840893152 @default.
- W2084089315 hasLocation W20840893153 @default.
- W2084089315 hasLocation W20840893154 @default.
- W2084089315 hasOpenAccess W2084089315 @default.
- W2084089315 hasPrimaryLocation W20840893151 @default.
- W2084089315 hasRelatedWork W182548817 @default.
- W2084089315 hasRelatedWork W1977559505 @default.
- W2084089315 hasRelatedWork W1990228632 @default.
- W2084089315 hasRelatedWork W2031480985 @default.
- W2084089315 hasRelatedWork W2084089315 @default.
- W2084089315 hasRelatedWork W2101516250 @default.
- W2084089315 hasRelatedWork W2115505311 @default.
- W2084089315 hasRelatedWork W2899743395 @default.
- W2084089315 hasRelatedWork W3039309587 @default.
- W2084089315 hasRelatedWork W3040692710 @default.
- W2084089315 hasVolume "267" @default.
- W2084089315 isParatext "false" @default.
- W2084089315 isRetracted "false" @default.
- W2084089315 magId "2084089315" @default.
- W2084089315 workType "article" @default.