Matches in SemOpenAlex for { <https://semopenalex.org/work/W2084089752> ?p ?o ?g. }
- W2084089752 endingPage "12654" @default.
- W2084089752 startingPage "12646" @default.
- W2084089752 abstract "In this study, we have examined the cellular and biochemical activities of the ceramide analog (1S,2R)-Derythro-2-(N-myristoylamino)-1-phenyl-1-propanol (Derythro-MAPP). Addition of 5 μMD-e-MAPP to HL-60 human promyelocytic leukemia cells resulted in a concentration- and time-dependent growth suppression accompanied by an arrest in the G0/G2 phase of the cell cycle; thus mimicking the action of exogenous ceramides. Its enantiomer L-e-MAPP was without effect. Two lines of evidence suggested that D-e-MAPP may not function as a direct analog of ceramide. First, D-e-MAPP possesses a stereochemical configuration opposite to that of D-erythro-ceramide. Second, D-e-MAPP failed to activate ceramide-activated protein phosphatase in vitro. Therefore, we examined if D-e-MAPP functioned indirectly by modulating endogenous ceramide levels. The addition of D-e-MAPP to cells, but not L-e-MAPP, caused a time- and concentration-dependent elevation in endogenous ceramide levels reaching greater than 3-fold over baseline following 24 h of treatment. Both D-e-MAPP and L-e-MAPP underwent similar uptake by HL-60 cells. D-e-MAPP was poorly metabolized, and remained intact in cells, whereas L-e-MAPP underwent a time- and concentration-dependent metabolism; primarily through N-deacylation. In vitro, L-e-MAPP was metabolized by alkaline ceramidase to an extent similar to that seen with C16-ceramide. D-e-MAPP was not metabolized. Instead, D-e-MAPP inhibited alkaline ceramidase activity in vitro with an IC50 of 1-5 μM. D-e-MAPP did not modulate the activity of other ceramide metabolizing enzymes in vitro or in cells, and it was a poor inhibitor of acid ceramidase (IC50 > 500 μM). Finally, D-e-MAPP inhibited the metabolism of L-e-MAPP in cells. These studies demonstrate that D-e-MAPP functions as an inhibitor of alkaline ceramidase in vitro and in cells resulting in elevation in endogenous levels of ceramide with the consequent biologic effects of growth suppression and cell cycle arrest. These studies point to an important role for ceramidases in the regulation of endogenous levels of ceramide. In this study, we have examined the cellular and biochemical activities of the ceramide analog (1S,2R)-Derythro-2-(N-myristoylamino)-1-phenyl-1-propanol (Derythro-MAPP). Addition of 5 μMD-e-MAPP to HL-60 human promyelocytic leukemia cells resulted in a concentration- and time-dependent growth suppression accompanied by an arrest in the G0/G2 phase of the cell cycle; thus mimicking the action of exogenous ceramides. Its enantiomer L-e-MAPP was without effect. Two lines of evidence suggested that D-e-MAPP may not function as a direct analog of ceramide. First, D-e-MAPP possesses a stereochemical configuration opposite to that of D-erythro-ceramide. Second, D-e-MAPP failed to activate ceramide-activated protein phosphatase in vitro. Therefore, we examined if D-e-MAPP functioned indirectly by modulating endogenous ceramide levels. The addition of D-e-MAPP to cells, but not L-e-MAPP, caused a time- and concentration-dependent elevation in endogenous ceramide levels reaching greater than 3-fold over baseline following 24 h of treatment. Both D-e-MAPP and L-e-MAPP underwent similar uptake by HL-60 cells. D-e-MAPP was poorly metabolized, and remained intact in cells, whereas L-e-MAPP underwent a time- and concentration-dependent metabolism; primarily through N-deacylation. In vitro, L-e-MAPP was metabolized by alkaline ceramidase to an extent similar to that seen with C16-ceramide. D-e-MAPP was not metabolized. Instead, D-e-MAPP inhibited alkaline ceramidase activity in vitro with an IC50 of 1-5 μM. D-e-MAPP did not modulate the activity of other ceramide metabolizing enzymes in vitro or in cells, and it was a poor inhibitor of acid ceramidase (IC50 > 500 μM). Finally, D-e-MAPP inhibited the metabolism of L-e-MAPP in cells. These studies demonstrate that D-e-MAPP functions as an inhibitor of alkaline ceramidase in vitro and in cells resulting in elevation in endogenous levels of ceramide with the consequent biologic effects of growth suppression and cell cycle arrest. These studies point to an important role for ceramidases in the regulation of endogenous levels of ceramide." @default.
- W2084089752 created "2016-06-24" @default.
- W2084089752 creator A5001215623 @default.
- W2084089752 creator A5006748956 @default.
- W2084089752 creator A5028959784 @default.
- W2084089752 creator A5064516774 @default.
- W2084089752 creator A5072799468 @default.
- W2084089752 creator A5076524129 @default.
- W2084089752 creator A5090422329 @default.
- W2084089752 date "1996-05-01" @default.
- W2084089752 modified "2023-10-10" @default.
- W2084089752 title "(1S,2R)-D-erythro-2-(N-Myristoylamino)-1-phenyl-1-propanol as an Inhibitor of Ceramidase" @default.
- W2084089752 cites W112886495 @default.
- W2084089752 cites W142265549 @default.
- W2084089752 cites W1428714033 @default.
- W2084089752 cites W1490342290 @default.
- W2084089752 cites W1513288125 @default.
- W2084089752 cites W1520176015 @default.
- W2084089752 cites W1522304947 @default.
- W2084089752 cites W1524495054 @default.
- W2084089752 cites W1535433473 @default.
- W2084089752 cites W1536767595 @default.
- W2084089752 cites W1536956900 @default.
- W2084089752 cites W1537101375 @default.
- W2084089752 cites W1542941723 @default.
- W2084089752 cites W1557233561 @default.
- W2084089752 cites W1566441785 @default.
- W2084089752 cites W1567257037 @default.
- W2084089752 cites W1577946620 @default.
- W2084089752 cites W1581414531 @default.
- W2084089752 cites W1581699504 @default.
- W2084089752 cites W1594095562 @default.
- W2084089752 cites W1595133660 @default.
- W2084089752 cites W1607893122 @default.
- W2084089752 cites W1635474458 @default.
- W2084089752 cites W1663952990 @default.
- W2084089752 cites W1686366659 @default.
- W2084089752 cites W1872694920 @default.
- W2084089752 cites W1915075400 @default.
- W2084089752 cites W1968077349 @default.
- W2084089752 cites W1972090215 @default.
- W2084089752 cites W1978048485 @default.
- W2084089752 cites W1986841583 @default.
- W2084089752 cites W1993395343 @default.
- W2084089752 cites W1993913955 @default.
- W2084089752 cites W1995560813 @default.
- W2084089752 cites W1996725093 @default.
- W2084089752 cites W1998166016 @default.
- W2084089752 cites W1998841085 @default.
- W2084089752 cites W2000823512 @default.
- W2084089752 cites W2003474943 @default.
- W2084089752 cites W2005514663 @default.
- W2084089752 cites W2007604755 @default.
- W2084089752 cites W2017729786 @default.
- W2084089752 cites W2019770358 @default.
- W2084089752 cites W2021230116 @default.
- W2084089752 cites W2046931520 @default.
- W2084089752 cites W2053993957 @default.
- W2084089752 cites W2055152784 @default.
- W2084089752 cites W2056500157 @default.
- W2084089752 cites W2059510815 @default.
- W2084089752 cites W2064601706 @default.
- W2084089752 cites W2066737616 @default.
- W2084089752 cites W2068570002 @default.
- W2084089752 cites W2080071635 @default.
- W2084089752 cites W2083836880 @default.
- W2084089752 cites W2086990422 @default.
- W2084089752 cites W2089252140 @default.
- W2084089752 cites W2091536410 @default.
- W2084089752 cites W2091708689 @default.
- W2084089752 cites W2115262231 @default.
- W2084089752 cites W2120033507 @default.
- W2084089752 cites W2121957273 @default.
- W2084089752 cites W2136648921 @default.
- W2084089752 cites W2196599801 @default.
- W2084089752 cites W2342838393 @default.
- W2084089752 cites W2399311038 @default.
- W2084089752 cites W969257698 @default.
- W2084089752 doi "https://doi.org/10.1074/jbc.271.21.12646" @default.
- W2084089752 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8647877" @default.
- W2084089752 hasPublicationYear "1996" @default.
- W2084089752 type Work @default.
- W2084089752 sameAs 2084089752 @default.
- W2084089752 citedByCount "185" @default.
- W2084089752 countsByYear W20840897522012 @default.
- W2084089752 countsByYear W20840897522013 @default.
- W2084089752 countsByYear W20840897522014 @default.
- W2084089752 countsByYear W20840897522015 @default.
- W2084089752 countsByYear W20840897522016 @default.
- W2084089752 countsByYear W20840897522017 @default.
- W2084089752 countsByYear W20840897522018 @default.
- W2084089752 countsByYear W20840897522019 @default.
- W2084089752 countsByYear W20840897522020 @default.
- W2084089752 countsByYear W20840897522021 @default.
- W2084089752 countsByYear W20840897522022 @default.
- W2084089752 countsByYear W20840897522023 @default.
- W2084089752 crossrefType "journal-article" @default.
- W2084089752 hasAuthorship W2084089752A5001215623 @default.