Matches in SemOpenAlex for { <https://semopenalex.org/work/W2084149948> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2084149948 endingPage "178" @default.
- W2084149948 startingPage "175" @default.
- W2084149948 abstract "EpigenomicsVol. 6, No. 2 CommentaryAre epigenetic changes in the intrauterine environment related to newborn neurobehavior?Barry M Lester, Elisabeth Conradt & Carmen J MarsitBarry M LesterAuthor for correspondence: E-mail Address: barry_l ester@brown.edu Department of Pediatrics, Brown Center for the Study of Children at Risk, Warren Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA Department of Psychiatry & Human Behavior, Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USASearch for more papers by this author, Elisabeth Conradt Department of Psychiatry & Human Behavior, Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USASearch for more papers by this author & Carmen J Marsit Departments of Pharmacology & Toxicology and Community & Family Medicine, Section Biostatistics and Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USASearch for more papers by this authorPublished Online:9 May 2014https://doi.org/10.2217/epi.14.9AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: human behavioral epigeneticsintrauterine environmentNNNSnewborn neurobehaviorplacentaReferences1 Barker DJ, Thornburg KL. The obstetric origins of health for a lifetime. Clin. Obstet. Gynecol. 56(3), 511–519 (2013).Crossref, Medline, Google Scholar2 Lester B, Marsit C, Conradt E, Bromer C, Padbury J. Behavioral epigenetics and the developmental origins of child mental health disorders. J. Dev. Orig. Health Dis. 3(6), 395–408 (2012).Crossref, Medline, CAS, Google Scholar3 Belsky J. The determinants of parenting: a process model. Child Dev. 55(1), 83–96 (1984).Crossref, Medline, CAS, Google Scholar4 Sroufe L. The role of infant-caregiver attachment in development. In: Clinical implications of attachment, Belsky J, Nezworski T (Eds). Erlbaum, Hillsdale, NJ, USA, 18–38 (1988).Google Scholar5 Lester B, Tronick E. The neonatal intensive care unit network neurobehavioral scale (NNNS). Pediatrics Suppl. 113(2), 631–699 (2004).Google Scholar6 Liu J, Bann C, Lester B et al. Neonatal neurobehavior predicts medical and behavioral outcome. Pediatrics 125(1), e90–e98 (2010).Crossref, Medline, Google Scholar7 Marsit CJ, Maccani MA, Padbury JF, Lester BM. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS ONE 7(3), e33794 (2012).Crossref, Medline, CAS, Google Scholar8 Novakovic B, Saffery R. The ever growing complexity of placental epigenetics – role in adverse pregnancy outcomes and fetal programming. Placenta 33(12), 959–970 (2012).Crossref, Medline, CAS, Google Scholar9 Yen SS. The placenta as the third brain. J. Reprod. Med. 39(4), 277–280 (1994).Medline, CAS, Google Scholar10 Gunnar M, Quevedo K. The neurobiology of stress and development. Annu. Rev. Psychol. 58, 145–173 (2007).Crossref, Medline, Google Scholar11 O’Donnell K, O’Connor TG, Glover V. Prenatal stress and neurodevelopment of the child: focus on the HPA axis and role of the placenta. Dev. Neurosci. 31(4), 285–292 (2009).Crossref, Medline, Google Scholar12 Meyer JS. Biochemical effects of corticosteroids on neural tissues. Physiol. Rev. 65(4), 946–1020 (1985).Crossref, Medline, CAS, Google Scholar13 Lester BM, Padbury JF. Third pathophysiology of prenatal cocaine exposure. Dev. Neurosci. 31(1–2), 23–35 (2009).Crossref, Medline, CAS, Google Scholar14 Bromer C, Marsit CJ, Armstrong DA, Padbury JF, Lester B. Genetic and epigenetic variation of the glucocorticoid receptor (NR3C1) in placenta and infant neurobehavior. Dev. Psychobiol. 55(7), 673–683 (2013).Medline, CAS, Google Scholar15 Paquette AG, Lesseur C, Armstrong DA et al. Placental HTR2A methylation is associated with infant neurobehavioral outcomes. Epigenetics 8(8), 796–801 (2013).Crossref, Medline, CAS, Google Scholar16 Nishizawa S, Benkelfat C, Young Sn et al. Differences between males and females in rates of serotonin synthesis in human brain. Proc. Natl Acad. Sci. USA 94(10), 5308–5313 (1997).Crossref, Medline, CAS, Google Scholar17 Haleem D. Raphe-hippocampal serotonin neurotransmission in the sex related differences of adaptation to stress: focus on serotonin-1A receptor. Curr. Neuropharmacol. 9, 512–521 (2011).Crossref, Medline, CAS, Google Scholar18 Conradt E, Lester BM, Appleton AA, Armstrong DA, Marsit CJ. The roles of DNA methylation of NR3C1 and 11beta-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics 8(12), 1321–1329 (2013).Crossref, Medline, CAS, Google Scholar19 Lester BM, Conradt E, Marsit CJ. Epigenetic basis for the development of depression in children. Clin. Obstet. Gynecol. 56(3), 556–565 (2013).Crossref, Medline, Google Scholar20 Alexe DM, Syridou G, Petridou ET. Determinants of early life leptin levels and later life degenerative outcomes. Clin. Medi. Res. 4(4), 326–335 (2006).Crossref, Medline, CAS, Google Scholar21 Bouret SG. Neurodevelopmental actions of leptin. Brain Res. 1350, 2–9 (2010).Crossref, Medline, CAS, Google Scholar22 Udagawa J, Hatta T, Hashimoto R, Otani H. Roles of leptin in prenatal and perinatal brain development. Congenit. Anom. 47(3), 77–83 (2007).Crossref, Medline, CAS, Google Scholar23 Lesseur C, Armstrong D, Murphy M et al. Sex-specific associations between placental leptin promoter DNA methylation and infant neurobehavior. Psychoneuroendocrinology 40, 1–9 (2014).Crossref, Medline, CAS, Google Scholar24 Pelleymounter MA, Cullen MJ, Baker MB et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269(5223), 540–543 (1995).Crossref, Medline, CAS, Google Scholar25 Marsit CJ, Lambertini L, Maccani MA et al. Placenta-imprinted gene expression association of infant neurobehavior. J. Pediatr. 160(5), 854–860 (2011).e852Crossref, Medline, Google Scholar26 Serafini G, Pompili M, Hansen KF et al. MicroRNAs. fundamental regulators of gene expression in major affective disorders and suicidal behavior? Front. Cell. Neurosci. 7, 208 (2013).Crossref, Medline, Google Scholar27 Armstrong D, Lesseur C, Conradt E, Lester B, Marsit C. Global and gene-specific DNA methylation across multiple tissues in early infancy: implications for children's health research. FASEB J. (2014). doi:10.1096/fj.13-238402 (Epub ahead of print).Crossref, Medline, Google Scholar28 Appleton AA, Armstrong DA, Lesseur C et al. Patterning in placental 11-B hydroxysteroid dehydrogenase methylation according to prenatal socioeconomic adversity. PLoS ONE 8(9), e74691 (2013).Crossref, Medline, CAS, Google Scholar29 Shonkoff JP, Boyce WT, McEwen BS. Neuroscience, molecular biology, and the childhood roots of health disparities: building a new framework for health promotion and disease prevention. JAMA 301(21), 2252–2259 (2009).Crossref, Medline, CAS, Google Scholar30 Rutter M, Caspi A, Moffitt TE. Using sex differences in psychopathology to study causal mechanisms: unifying issues and research strategies. J. Child Psychol. Psychiatry 44(8), 1092–1115 (2003).Crossref, Medline, Google ScholarFiguresReferencesRelatedDetailsCited ByImpact of cannabinoids on pregnancy, reproductive health, and offspring outcomesAmerican Journal of Obstetrics and Gynecology, Vol. 227, No. 4Placental programming, perinatal inflammation, and neurodevelopment impairment among those born extremely preterm12 November 2020 | Pediatric Research, Vol. 89, No. 2A Behavioral Epigenetics Model to Predict Oral Feeding Skills in Preterm Infants27 February 2020 | Advances in Neonatal Care, Vol. 20, No. 5Neuropsychological AssessmentEpigenome-wide DNA methylation in placentas from preterm infants: association with maternal socioeconomic status21 May 2019 | Epigenetics, Vol. 14, No. 8The early biopsychosocial development of boys and the origins of violence in males2 January 2019 | Infant Mental Health Journal, Vol. 40, No. 1Incorporating epigenetic mechanisms to advance fetal programming theories2 August 2018 | Development and Psychopathology, Vol. 30, No. 3Impact of maternal prenatal smoking on fetal to infant neurobehavioral development2 August 2018 | Development and Psychopathology, Vol. 30, No. 3Epigenetics in Neurobehavioral DiseaseNeurobehavioural Development in Infancy12 May 2017Folded Futurity: Epigenetic Plasticity, Temporality, and New Thresholds of Fetal Life16 March 2017 | Science as Culture, Vol. 26, No. 3Development of self-inflicted injury: Comorbidities and continuities with borderline and antisocial personality traits14 October 2016 | Development and Psychopathology, Vol. 28, No. 4pt1Adverse maternal exposures, methylation of glucocorticoid-related genes and perinatal outcomes: a systematic reviewSairaman Nagarajan, Bobak Seddighzadeh, Andrea Baccarelli, Lauren A Wise, Michelle Williams & Alexandra E Shields6 July 2016 | Epigenomics, Vol. 8, No. 7Epigenetic Alterations to NR3C1 and HSD11B2 and the Developmental Origins of Mental Disease Risk30 June 2016Epigenetic Regulation of Placental NR3C1 : Mechanism Underlying Prenatal Programming of Infant Neurobehavior by Maternal Smoking?28 January 2016 | Child Development, Vol. 87, No. 1Antecedents of the Child Behavior Checklist–Dysregulation Profile in Children Born Extremely PretermJournal of the American Academy of Child & Adolescent Psychiatry, Vol. 54, No. 10Examining the joint contribution of placental NR3C1 and HSD11B2 methylation for infant neurobehaviorPsychoneuroendocrinology, Vol. 52 Vol. 6, No. 2 Follow us on social media for the latest updates Metrics Downloaded 104 times History Published online 9 May 2014 Published in print April 2014 Information© Future Medicine LtdKeywordshuman behavioral epigeneticsintrauterine environmentNNNSnewborn neurobehaviorplacentaFinancial & competing interests disclosure.This work was funded by the National Institute of Health (NIH) through the following grants: R01-MH094609 and R01-ES022223 (NIH-NIMH). Its contents are the responsibility of the authors and do not necessarily represent the official views of the funding institutions. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W2084149948 created "2016-06-24" @default.
- W2084149948 creator A5006269355 @default.
- W2084149948 creator A5012121180 @default.
- W2084149948 creator A5068668637 @default.
- W2084149948 date "2014-04-01" @default.
- W2084149948 modified "2023-10-16" @default.
- W2084149948 title "Are epigenetic changes in the intrauterine environment related to newborn neurobehavior?" @default.
- W2084149948 cites W1934163786 @default.
- W2084149948 cites W1972424525 @default.
- W2084149948 cites W1978611831 @default.
- W2084149948 cites W1986986570 @default.
- W2084149948 cites W2003519522 @default.
- W2084149948 cites W2008065864 @default.
- W2084149948 cites W2031414482 @default.
- W2084149948 cites W2036731398 @default.
- W2084149948 cites W2039284296 @default.
- W2084149948 cites W2039992164 @default.
- W2084149948 cites W2043227725 @default.
- W2084149948 cites W2051068515 @default.
- W2084149948 cites W2052636781 @default.
- W2084149948 cites W2060682066 @default.
- W2084149948 cites W2070602780 @default.
- W2084149948 cites W2070920134 @default.
- W2084149948 cites W2073537354 @default.
- W2084149948 cites W2078077523 @default.
- W2084149948 cites W2078785414 @default.
- W2084149948 cites W2078891823 @default.
- W2084149948 cites W2082657812 @default.
- W2084149948 cites W2084168147 @default.
- W2084149948 cites W2115871268 @default.
- W2084149948 cites W2123190107 @default.
- W2084149948 cites W4206286254 @default.
- W2084149948 cites W4214639054 @default.
- W2084149948 doi "https://doi.org/10.2217/epi.14.9" @default.
- W2084149948 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4407197" @default.
- W2084149948 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24811786" @default.
- W2084149948 hasPublicationYear "2014" @default.
- W2084149948 type Work @default.
- W2084149948 sameAs 2084149948 @default.
- W2084149948 citedByCount "21" @default.
- W2084149948 countsByYear W20841499482014 @default.
- W2084149948 countsByYear W20841499482015 @default.
- W2084149948 countsByYear W20841499482016 @default.
- W2084149948 countsByYear W20841499482017 @default.
- W2084149948 countsByYear W20841499482018 @default.
- W2084149948 countsByYear W20841499482019 @default.
- W2084149948 countsByYear W20841499482020 @default.
- W2084149948 countsByYear W20841499482022 @default.
- W2084149948 countsByYear W20841499482023 @default.
- W2084149948 crossrefType "journal-article" @default.
- W2084149948 hasAuthorship W2084149948A5006269355 @default.
- W2084149948 hasAuthorship W2084149948A5012121180 @default.
- W2084149948 hasAuthorship W2084149948A5068668637 @default.
- W2084149948 hasBestOaLocation W20841499482 @default.
- W2084149948 hasConcept C104317684 @default.
- W2084149948 hasConcept C150194340 @default.
- W2084149948 hasConcept C184151982 @default.
- W2084149948 hasConcept C190727270 @default.
- W2084149948 hasConcept C41091548 @default.
- W2084149948 hasConcept C42407357 @default.
- W2084149948 hasConcept C54355233 @default.
- W2084149948 hasConcept C60644358 @default.
- W2084149948 hasConcept C86803240 @default.
- W2084149948 hasConceptScore W2084149948C104317684 @default.
- W2084149948 hasConceptScore W2084149948C150194340 @default.
- W2084149948 hasConceptScore W2084149948C184151982 @default.
- W2084149948 hasConceptScore W2084149948C190727270 @default.
- W2084149948 hasConceptScore W2084149948C41091548 @default.
- W2084149948 hasConceptScore W2084149948C42407357 @default.
- W2084149948 hasConceptScore W2084149948C54355233 @default.
- W2084149948 hasConceptScore W2084149948C60644358 @default.
- W2084149948 hasConceptScore W2084149948C86803240 @default.
- W2084149948 hasIssue "2" @default.
- W2084149948 hasLocation W20841499481 @default.
- W2084149948 hasLocation W20841499482 @default.
- W2084149948 hasLocation W20841499483 @default.
- W2084149948 hasLocation W20841499484 @default.
- W2084149948 hasOpenAccess W2084149948 @default.
- W2084149948 hasPrimaryLocation W20841499481 @default.
- W2084149948 hasRelatedWork W1491524348 @default.
- W2084149948 hasRelatedWork W1577435787 @default.
- W2084149948 hasRelatedWork W1886199067 @default.
- W2084149948 hasRelatedWork W1991175997 @default.
- W2084149948 hasRelatedWork W2214376880 @default.
- W2084149948 hasRelatedWork W2330598502 @default.
- W2084149948 hasRelatedWork W2738218039 @default.
- W2084149948 hasRelatedWork W2773237536 @default.
- W2084149948 hasRelatedWork W2790572587 @default.
- W2084149948 hasRelatedWork W3161338451 @default.
- W2084149948 hasVolume "6" @default.
- W2084149948 isParatext "false" @default.
- W2084149948 isRetracted "false" @default.
- W2084149948 magId "2084149948" @default.
- W2084149948 workType "article" @default.