Matches in SemOpenAlex for { <https://semopenalex.org/work/W2084436050> ?p ?o ?g. }
- W2084436050 abstract "The scaled subprofile model (SSM)(1-4) is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data(2,5,6). Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors(7,8). Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects(5,6). Cross-validation within the derivation set can be performed using bootstrap resampling techniques(9). Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets(10). Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation(11). These standardized values can in turn be used to assist in differential diagnosis(12,13) and to assess disease progression and treatment effects at the network level(7,14-16). We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease." @default.
- W2084436050 created "2016-06-24" @default.
- W2084436050 creator A5001118110 @default.
- W2084436050 creator A5040721205 @default.
- W2084436050 creator A5041539272 @default.
- W2084436050 creator A5050445270 @default.
- W2084436050 creator A5073844544 @default.
- W2084436050 creator A5074164462 @default.
- W2084436050 creator A5091505277 @default.
- W2084436050 date "2013-06-26" @default.
- W2084436050 modified "2023-10-02" @default.
- W2084436050 title "Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data" @default.
- W2084436050 cites W1908619978 @default.
- W2084436050 cites W1964300579 @default.
- W2084436050 cites W1965144006 @default.
- W2084436050 cites W1966328309 @default.
- W2084436050 cites W1974296586 @default.
- W2084436050 cites W1975427503 @default.
- W2084436050 cites W1981567889 @default.
- W2084436050 cites W1995945562 @default.
- W2084436050 cites W1998995153 @default.
- W2084436050 cites W1999694937 @default.
- W2084436050 cites W2000511751 @default.
- W2084436050 cites W2008591007 @default.
- W2084436050 cites W2009103351 @default.
- W2084436050 cites W2009494091 @default.
- W2084436050 cites W2016670178 @default.
- W2084436050 cites W2020916977 @default.
- W2084436050 cites W2027518477 @default.
- W2084436050 cites W2030420268 @default.
- W2084436050 cites W2044266196 @default.
- W2084436050 cites W2047000182 @default.
- W2084436050 cites W2048207814 @default.
- W2084436050 cites W2058415227 @default.
- W2084436050 cites W2059159151 @default.
- W2084436050 cites W2060899536 @default.
- W2084436050 cites W2061627323 @default.
- W2084436050 cites W2065194085 @default.
- W2084436050 cites W2066832558 @default.
- W2084436050 cites W2070115712 @default.
- W2084436050 cites W2072522618 @default.
- W2084436050 cites W2078455576 @default.
- W2084436050 cites W2081432693 @default.
- W2084436050 cites W2091536386 @default.
- W2084436050 cites W2092157091 @default.
- W2084436050 cites W2095476216 @default.
- W2084436050 cites W2100680313 @default.
- W2084436050 cites W2102917482 @default.
- W2084436050 cites W2113502567 @default.
- W2084436050 cites W2116799974 @default.
- W2084436050 cites W2117277050 @default.
- W2084436050 cites W2120429648 @default.
- W2084436050 cites W2120571685 @default.
- W2084436050 cites W2129597913 @default.
- W2084436050 cites W2133903921 @default.
- W2084436050 cites W2136738881 @default.
- W2084436050 cites W2142635246 @default.
- W2084436050 cites W2143836513 @default.
- W2084436050 cites W2149224850 @default.
- W2084436050 cites W2158763379 @default.
- W2084436050 cites W2160813944 @default.
- W2084436050 cites W2260185607 @default.
- W2084436050 cites W2264709743 @default.
- W2084436050 cites W2344606794 @default.
- W2084436050 doi "https://doi.org/10.3791/50319" @default.
- W2084436050 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3728991" @default.
- W2084436050 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23851955" @default.
- W2084436050 hasPublicationYear "2013" @default.
- W2084436050 type Work @default.
- W2084436050 sameAs 2084436050 @default.
- W2084436050 citedByCount "33" @default.
- W2084436050 countsByYear W20844360502014 @default.
- W2084436050 countsByYear W20844360502015 @default.
- W2084436050 countsByYear W20844360502016 @default.
- W2084436050 countsByYear W20844360502017 @default.
- W2084436050 countsByYear W20844360502018 @default.
- W2084436050 countsByYear W20844360502019 @default.
- W2084436050 countsByYear W20844360502020 @default.
- W2084436050 countsByYear W20844360502021 @default.
- W2084436050 countsByYear W20844360502022 @default.
- W2084436050 countsByYear W20844360502023 @default.
- W2084436050 crossrefType "journal-article" @default.
- W2084436050 hasAuthorship W2084436050A5001118110 @default.
- W2084436050 hasAuthorship W2084436050A5040721205 @default.
- W2084436050 hasAuthorship W2084436050A5041539272 @default.
- W2084436050 hasAuthorship W2084436050A5050445270 @default.
- W2084436050 hasAuthorship W2084436050A5073844544 @default.
- W2084436050 hasAuthorship W2084436050A5074164462 @default.
- W2084436050 hasAuthorship W2084436050A5091505277 @default.
- W2084436050 hasBestOaLocation W20844360502 @default.
- W2084436050 hasConcept C105795698 @default.
- W2084436050 hasConcept C119340705 @default.
- W2084436050 hasConcept C150921843 @default.
- W2084436050 hasConcept C151956035 @default.
- W2084436050 hasConcept C153180895 @default.
- W2084436050 hasConcept C154945302 @default.
- W2084436050 hasConcept C161584116 @default.
- W2084436050 hasConcept C178650346 @default.
- W2084436050 hasConcept C199163554 @default.
- W2084436050 hasConcept C27438332 @default.