Matches in SemOpenAlex for { <https://semopenalex.org/work/W2084509516> ?p ?o ?g. }
- W2084509516 endingPage "225" @default.
- W2084509516 startingPage "214" @default.
- W2084509516 abstract "Segmentation of the prostate boundary on clinical images is useful in a large number of applications including calculation of prostate volume pre- and post-treatment, to detect extra-capsular spread, and for creating patient-specific anatomical models. Manual segmentation of the prostate boundary is, however, time consuming and subject to inter- and intra-reader variability. T2-weighted (T2-w) magnetic resonance (MR) structural imaging (MRI) and MR spectroscopy (MRS) have recently emerged as promising modalities for detection of prostate cancer in vivo. MRS data consists of spectral signals measuring relative metabolic concentrations, and the metavoxels near the prostate have distinct spectral signals from metavoxels outside the prostate. Active Shape Models (ASM's) have become very popular segmentation methods for biomedical imagery. However, ASMs require careful initialization and are extremely sensitive to model initialization. The primary contribution of this paper is a scheme to automatically initialize an ASM for prostate segmentation on endorectal in vivo multi-protocol MRI via automated identification of MR spectra that lie within the prostate. A replicated clustering scheme is employed to distinguish prostatic from extra-prostatic MR spectra in the midgland. The spatial locations of the prostate spectra so identified are used as the initial ROI for a 2D ASM. The midgland initializations are used to define a ROI that is then scaled in 3D to cover the base and apex of the prostate. A multi-feature ASM employing statistical texture features is then used to drive the edge detection instead of just image intensity information alone. Quantitative comparison with another recent ASM initialization method by Cosio showed that our scheme resulted in a superior average segmentation performance on a total of 388 2D MRI sections obtained from 32 3D endorectal in vivo patient studies. Initialization of a 2D ASM via our MRS-based clustering scheme resulted in an average overlap accuracy (true positive ratio) of 0.60, while the scheme of Cosio yielded a corresponding average accuracy of 0.56 over 388 2D MR image sections. During an ASM segmentation, using no initialization resulted in an overlap of 0.53, using the Cosio based methodology resulted in an overlap of 0.60, and using the MRS-based methodology resulted in an overlap of 0.67, with a paired Student's t-test indicating statistical significance to a high degree for all results. We also show that the final ASM segmentation result is highly correlated (as high as 0.90) to the initialization scheme." @default.
- W2084509516 created "2016-06-24" @default.
- W2084509516 creator A5026884047 @default.
- W2084509516 creator A5027642699 @default.
- W2084509516 creator A5033201306 @default.
- W2084509516 creator A5042392208 @default.
- W2084509516 creator A5049607541 @default.
- W2084509516 creator A5077822983 @default.
- W2084509516 creator A5081743688 @default.
- W2084509516 creator A5090714220 @default.
- W2084509516 date "2011-04-01" @default.
- W2084509516 modified "2023-10-14" @default.
- W2084509516 title "A magnetic resonance spectroscopy driven initialization scheme for active shape model based prostate segmentation" @default.
- W2084509516 cites W1480376833 @default.
- W2084509516 cites W1512148629 @default.
- W2084509516 cites W1517542533 @default.
- W2084509516 cites W1537260010 @default.
- W2084509516 cites W1546632069 @default.
- W2084509516 cites W1554643662 @default.
- W2084509516 cites W1598680799 @default.
- W2084509516 cites W1600107057 @default.
- W2084509516 cites W1600253153 @default.
- W2084509516 cites W1977421983 @default.
- W2084509516 cites W1982852576 @default.
- W2084509516 cites W1994746045 @default.
- W2084509516 cites W1997351518 @default.
- W2084509516 cites W2003708473 @default.
- W2084509516 cites W2004918136 @default.
- W2084509516 cites W2011441736 @default.
- W2084509516 cites W2016302913 @default.
- W2084509516 cites W2017292681 @default.
- W2084509516 cites W2027121965 @default.
- W2084509516 cites W2032051785 @default.
- W2084509516 cites W2038952578 @default.
- W2084509516 cites W2048066618 @default.
- W2084509516 cites W2052617496 @default.
- W2084509516 cites W2058367670 @default.
- W2084509516 cites W2058671060 @default.
- W2084509516 cites W2059975382 @default.
- W2084509516 cites W2062125287 @default.
- W2084509516 cites W2063322641 @default.
- W2084509516 cites W2067191022 @default.
- W2084509516 cites W2080362539 @default.
- W2084509516 cites W2081676834 @default.
- W2084509516 cites W2082214883 @default.
- W2084509516 cites W2092946690 @default.
- W2084509516 cites W2096889990 @default.
- W2084509516 cites W2097571405 @default.
- W2084509516 cites W2098979973 @default.
- W2084509516 cites W2107849119 @default.
- W2084509516 cites W2112038785 @default.
- W2084509516 cites W2119973007 @default.
- W2084509516 cites W2121205093 @default.
- W2084509516 cites W2122443056 @default.
- W2084509516 cites W2124565667 @default.
- W2084509516 cites W2125878029 @default.
- W2084509516 cites W2126763729 @default.
- W2084509516 cites W2134139970 @default.
- W2084509516 cites W2139271254 @default.
- W2084509516 cites W2139608229 @default.
- W2084509516 cites W2144585946 @default.
- W2084509516 cites W2146175325 @default.
- W2084509516 cites W2146512659 @default.
- W2084509516 cites W2148347694 @default.
- W2084509516 cites W2148970899 @default.
- W2084509516 cites W2150040483 @default.
- W2084509516 cites W2151485462 @default.
- W2084509516 cites W2153810084 @default.
- W2084509516 cites W2157115053 @default.
- W2084509516 cites W2163273992 @default.
- W2084509516 cites W2164239892 @default.
- W2084509516 cites W2335679869 @default.
- W2084509516 cites W2799061466 @default.
- W2084509516 cites W2915543933 @default.
- W2084509516 cites W745225477 @default.
- W2084509516 doi "https://doi.org/10.1016/j.media.2010.09.002" @default.
- W2084509516 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3707151" @default.
- W2084509516 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21195016" @default.
- W2084509516 hasPublicationYear "2011" @default.
- W2084509516 type Work @default.
- W2084509516 sameAs 2084509516 @default.
- W2084509516 citedByCount "43" @default.
- W2084509516 countsByYear W20845095162012 @default.
- W2084509516 countsByYear W20845095162013 @default.
- W2084509516 countsByYear W20845095162014 @default.
- W2084509516 countsByYear W20845095162015 @default.
- W2084509516 countsByYear W20845095162016 @default.
- W2084509516 countsByYear W20845095162017 @default.
- W2084509516 countsByYear W20845095162018 @default.
- W2084509516 countsByYear W20845095162019 @default.
- W2084509516 countsByYear W20845095162020 @default.
- W2084509516 countsByYear W20845095162021 @default.
- W2084509516 crossrefType "journal-article" @default.
- W2084509516 hasAuthorship W2084509516A5026884047 @default.
- W2084509516 hasAuthorship W2084509516A5027642699 @default.
- W2084509516 hasAuthorship W2084509516A5033201306 @default.
- W2084509516 hasAuthorship W2084509516A5042392208 @default.
- W2084509516 hasAuthorship W2084509516A5049607541 @default.