Matches in SemOpenAlex for { <https://semopenalex.org/work/W2084551409> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2084551409 endingPage "816" @default.
- W2084551409 startingPage "807" @default.
- W2084551409 abstract "Article history: Received 12 April 2012 Received in revised format 12 June 2012 Accepted June 22 2012 Available online 27 June 2012 In this paper, a new optimization technique known as Teaching–Learning-Based Optimization (TLBO) is implemented for solving high dimensional function optimization problems. Even though there are several other approaches to address this issue but the cost of computations are more in handling high dimensional problems. In this work we simulate TLBO for high dimensional benchmark function optimizations and compare its results with very widely used alternate techniques like Differential Evolution (DE) and Particle Swarm Optimization (PSO). Results clearly reveal that TLBO is able to address the computational cost issue for all simulated functions to a large dimensions compared to other two techniques. © 2012 Growing Science Ltd. All rights reserved" @default.
- W2084551409 created "2016-06-24" @default.
- W2084551409 creator A5023271638 @default.
- W2084551409 creator A5048708994 @default.
- W2084551409 creator A5058475882 @default.
- W2084551409 date "2012-10-01" @default.
- W2084551409 modified "2023-10-14" @default.
- W2084551409 title "High dimensional real parameter optimization with teaching learning based optimization" @default.
- W2084551409 cites W2084551409 @default.
- W2084551409 doi "https://doi.org/10.5267/j.ijiec.2012.06.001" @default.
- W2084551409 hasPublicationYear "2012" @default.
- W2084551409 type Work @default.
- W2084551409 sameAs 2084551409 @default.
- W2084551409 citedByCount "12" @default.
- W2084551409 countsByYear W20845514092012 @default.
- W2084551409 countsByYear W20845514092013 @default.
- W2084551409 countsByYear W20845514092014 @default.
- W2084551409 countsByYear W20845514092015 @default.
- W2084551409 countsByYear W20845514092016 @default.
- W2084551409 countsByYear W20845514092018 @default.
- W2084551409 countsByYear W20845514092020 @default.
- W2084551409 crossrefType "journal-article" @default.
- W2084551409 hasAuthorship W2084551409A5023271638 @default.
- W2084551409 hasAuthorship W2084551409A5048708994 @default.
- W2084551409 hasAuthorship W2084551409A5058475882 @default.
- W2084551409 hasBestOaLocation W20845514091 @default.
- W2084551409 hasConcept C126255220 @default.
- W2084551409 hasConcept C154945302 @default.
- W2084551409 hasConcept C33923547 @default.
- W2084551409 hasConcept C41008148 @default.
- W2084551409 hasConceptScore W2084551409C126255220 @default.
- W2084551409 hasConceptScore W2084551409C154945302 @default.
- W2084551409 hasConceptScore W2084551409C33923547 @default.
- W2084551409 hasConceptScore W2084551409C41008148 @default.
- W2084551409 hasIssue "5" @default.
- W2084551409 hasLocation W20845514091 @default.
- W2084551409 hasOpenAccess W2084551409 @default.
- W2084551409 hasPrimaryLocation W20845514091 @default.
- W2084551409 hasRelatedWork W1596801655 @default.
- W2084551409 hasRelatedWork W2130043461 @default.
- W2084551409 hasRelatedWork W2350741829 @default.
- W2084551409 hasRelatedWork W2358668433 @default.
- W2084551409 hasRelatedWork W2376932109 @default.
- W2084551409 hasRelatedWork W2382290278 @default.
- W2084551409 hasRelatedWork W2390279801 @default.
- W2084551409 hasRelatedWork W2748952813 @default.
- W2084551409 hasRelatedWork W2899084033 @default.
- W2084551409 hasRelatedWork W2530322880 @default.
- W2084551409 hasVolume "3" @default.
- W2084551409 isParatext "false" @default.
- W2084551409 isRetracted "false" @default.
- W2084551409 magId "2084551409" @default.
- W2084551409 workType "article" @default.