Matches in SemOpenAlex for { <https://semopenalex.org/work/W2084815406> ?p ?o ?g. }
- W2084815406 endingPage "441" @default.
- W2084815406 startingPage "423" @default.
- W2084815406 abstract "Methods of genomic value prediction are reviewed. The majority of the methods are related to mixed model methodology, either explicitly or implicitly, by treating systematic environmental effects as fixed and quantitative trait locus (QTL) effects as random. Six different methods are reviewed, including least squares (LS), ridge regression, Bayesian shrinkage, least absolute shrinkage and selection operator (Lasso), empirical Bayes and partial least squares (PLS). The LS and PLS methods are non-Bayesian because they do not require probability distributions for the data. The PLS method is introduced as a special dimension reduction scheme to handle high-density marker information. Theory and methods of cross-validation are described. The leave-one-out cross-validation approach is recommended for model validation. A working example is used to demonstrate the utility of genome selection (GS) in barley. The data set contained 150 double haploid lines and 495 DNA markers covering the entire barley genome, with an average marker interval of 2·23 cM. Eight quantitative traits were included in the analysis. GS using the empirical Bayesian method showed high predictability of the markers for all eight traits with a mean accuracy of prediction of 0·70. With traditional marker-assisted selection (MAS), the average accuracy of prediction was 0·59, giving an average gain of GS over MAS of 0·11. This study provided strong evidence that GS using marker information alone can be an efficient tool for plant breeding." @default.
- W2084815406 created "2016-06-24" @default.
- W2084815406 creator A5004706867 @default.
- W2084815406 creator A5048671128 @default.
- W2084815406 date "2010-12-01" @default.
- W2084815406 modified "2023-09-24" @default.
- W2084815406 title "Methods of plant breeding in the genome era" @default.
- W2084815406 cites W1524943018 @default.
- W2084815406 cites W1819387938 @default.
- W2084815406 cites W1855982476 @default.
- W2084815406 cites W1928998639 @default.
- W2084815406 cites W1936555975 @default.
- W2084815406 cites W1973214225 @default.
- W2084815406 cites W1976251851 @default.
- W2084815406 cites W1982585616 @default.
- W2084815406 cites W1982652137 @default.
- W2084815406 cites W1996587722 @default.
- W2084815406 cites W2000084758 @default.
- W2084815406 cites W2004646826 @default.
- W2084815406 cites W2013144254 @default.
- W2084815406 cites W2033872649 @default.
- W2084815406 cites W2037460094 @default.
- W2084815406 cites W2038444696 @default.
- W2084815406 cites W2040615655 @default.
- W2084815406 cites W2042752027 @default.
- W2084815406 cites W2045050602 @default.
- W2084815406 cites W2049077684 @default.
- W2084815406 cites W2049441925 @default.
- W2084815406 cites W2050029156 @default.
- W2084815406 cites W2060211403 @default.
- W2084815406 cites W2063978378 @default.
- W2084815406 cites W2065520553 @default.
- W2084815406 cites W2072214908 @default.
- W2084815406 cites W2079632018 @default.
- W2084815406 cites W2087883561 @default.
- W2084815406 cites W2088900302 @default.
- W2084815406 cites W2092723268 @default.
- W2084815406 cites W2092923243 @default.
- W2084815406 cites W2093380257 @default.
- W2084815406 cites W2097057782 @default.
- W2084815406 cites W2098126593 @default.
- W2084815406 cites W2101924605 @default.
- W2084815406 cites W2102630263 @default.
- W2084815406 cites W2115481383 @default.
- W2084815406 cites W2120367894 @default.
- W2084815406 cites W2125860227 @default.
- W2084815406 cites W2126457991 @default.
- W2084815406 cites W2128388820 @default.
- W2084815406 cites W2132887888 @default.
- W2084815406 cites W2133787786 @default.
- W2084815406 cites W2134036574 @default.
- W2084815406 cites W2134070988 @default.
- W2084815406 cites W2135046866 @default.
- W2084815406 cites W2135661628 @default.
- W2084815406 cites W2147802052 @default.
- W2084815406 cites W2156151358 @default.
- W2084815406 cites W2157291679 @default.
- W2084815406 cites W2158672154 @default.
- W2084815406 cites W2161403966 @default.
- W2084815406 cites W2169909737 @default.
- W2084815406 cites W2303043072 @default.
- W2084815406 cites W2502759836 @default.
- W2084815406 cites W4234173777 @default.
- W2084815406 cites W4293258550 @default.
- W2084815406 doi "https://doi.org/10.1017/s0016672310000583" @default.
- W2084815406 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21429273" @default.
- W2084815406 hasPublicationYear "2010" @default.
- W2084815406 type Work @default.
- W2084815406 sameAs 2084815406 @default.
- W2084815406 citedByCount "21" @default.
- W2084815406 countsByYear W20848154062012 @default.
- W2084815406 countsByYear W20848154062013 @default.
- W2084815406 countsByYear W20848154062014 @default.
- W2084815406 countsByYear W20848154062015 @default.
- W2084815406 countsByYear W20848154062016 @default.
- W2084815406 countsByYear W20848154062017 @default.
- W2084815406 countsByYear W20848154062018 @default.
- W2084815406 countsByYear W20848154062021 @default.
- W2084815406 countsByYear W20848154062022 @default.
- W2084815406 crossrefType "journal-article" @default.
- W2084815406 hasAuthorship W2084815406A5004706867 @default.
- W2084815406 hasAuthorship W2084815406A5048671128 @default.
- W2084815406 hasBestOaLocation W20848154061 @default.
- W2084815406 hasConcept C102592046 @default.
- W2084815406 hasConcept C104317684 @default.
- W2084815406 hasConcept C105795698 @default.
- W2084815406 hasConcept C107673813 @default.
- W2084815406 hasConcept C135763542 @default.
- W2084815406 hasConcept C136764020 @default.
- W2084815406 hasConcept C139945424 @default.
- W2084815406 hasConcept C153209595 @default.
- W2084815406 hasConcept C165646398 @default.
- W2084815406 hasConcept C191393472 @default.
- W2084815406 hasConcept C207201462 @default.
- W2084815406 hasConcept C2992444039 @default.
- W2084815406 hasConcept C33923547 @default.
- W2084815406 hasConcept C37616216 @default.
- W2084815406 hasConcept C41008148 @default.