Matches in SemOpenAlex for { <https://semopenalex.org/work/W2084846987> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2084846987 endingPage "45" @default.
- W2084846987 startingPage "32" @default.
- W2084846987 abstract "The recent advances in genomic technologies and the availability of large-scale microarray datasets call for the development of advanced data analysis techniques, such as data mining and statistical analysis to cite a few. Among the mining techniques proposed so far, cluster analysis has become a standard method for the analysis of microarray expression data. It can be used both for initial screening of patients and for extraction of disease molecular signatures. Moreover, clustering can be profitably exploited to characterize genes of unknown function and uncover patterns that can be interpreted as indications of the status of cellular processes. Finally, clustering biological data would be useful not only for exploring the data but also for discovering implicit links between the objects. To this end, several clustering approaches have been proposed in order to obtain a good trade-off between accuracy and efficiency of the clustering process. In particular, great attention has been devoted to hierarchical clustering algorithms for their accuracy in unsupervised identification and stratification of groups of similar genes or patients, while, partition based approaches are exploited when fast computations are required. Indeed, it is well known that no existing clustering algorithm completely satisfies both accuracy and efficiency requirements, thus a good clustering algorithm has to be evaluated with respect to some external criteria that are independent from the metric being used to compute clusters. In this paper, we propose a clustering algorithm called M-CLUBS (for Microarray data CLustering Using Binary Splitting) exhibiting higher accuracy than the hierarchical ones proposed so far while allowing a faster computation with respect to partition based approaches. Indeed, M-CLUBS is faster and more accurate than other algorithms, including k-means and its recently proposed refinements, as we will show in the experimental section. The algorithm consists of a divisive phase and an agglomerative phase; during these two phases, the samples are repartitioned using a least quadratic distance criterion possessing unique analytical properties that we exploit to achieve a very fast computation. M-CLUBS derives good clusters without requiring input from users, and it is robust and impervious to noise, while providing better speed and accuracy than methods, such as BIRCH, that are endowed with the same critical properties. Due to the structural feature of microarray data (they are represented as arrays of numeric values), M-CLUBS is suitable for analyzing them since it is designed to perform well for Euclidean distances. In order to stronger the obtained results we interpreted the obtained clusters by a domain expert and the evaluation by quality measures specifically tailored for biological validity assessment." @default.
- W2084846987 created "2016-06-24" @default.
- W2084846987 creator A5005904043 @default.
- W2084846987 creator A5035469601 @default.
- W2084846987 creator A5084932479 @default.
- W2084846987 date "2014-03-01" @default.
- W2084846987 modified "2023-10-17" @default.
- W2084846987 title "Analysing microarray expression data through effective clustering" @default.
- W2084846987 cites W1578803970 @default.
- W2084846987 cites W1964507741 @default.
- W2084846987 cites W1973249296 @default.
- W2084846987 cites W1987940107 @default.
- W2084846987 cites W1992419399 @default.
- W2084846987 cites W2000594030 @default.
- W2084846987 cites W2007227595 @default.
- W2084846987 cites W2011500554 @default.
- W2084846987 cites W2014207237 @default.
- W2084846987 cites W2016493165 @default.
- W2084846987 cites W2023971898 @default.
- W2084846987 cites W2028699390 @default.
- W2084846987 cites W2029382089 @default.
- W2084846987 cites W2055828595 @default.
- W2084846987 cites W2056780622 @default.
- W2084846987 cites W2080728354 @default.
- W2084846987 cites W2103991913 @default.
- W2084846987 cites W2104811588 @default.
- W2084846987 cites W2107303832 @default.
- W2084846987 cites W2107946060 @default.
- W2084846987 cites W2110720155 @default.
- W2084846987 cites W2111110587 @default.
- W2084846987 cites W2115831762 @default.
- W2084846987 cites W2120636855 @default.
- W2084846987 cites W2131456395 @default.
- W2084846987 cites W2131518207 @default.
- W2084846987 cites W2135951244 @default.
- W2084846987 cites W2138582694 @default.
- W2084846987 cites W2140247752 @default.
- W2084846987 cites W2141245797 @default.
- W2084846987 cites W2141823231 @default.
- W2084846987 cites W2158012006 @default.
- W2084846987 cites W2160642098 @default.
- W2084846987 cites W2162421645 @default.
- W2084846987 cites W2611831635 @default.
- W2084846987 cites W4255288860 @default.
- W2084846987 doi "https://doi.org/10.1016/j.ins.2013.12.003" @default.
- W2084846987 hasPublicationYear "2014" @default.
- W2084846987 type Work @default.
- W2084846987 sameAs 2084846987 @default.
- W2084846987 citedByCount "20" @default.
- W2084846987 countsByYear W20848469872014 @default.
- W2084846987 countsByYear W20848469872015 @default.
- W2084846987 countsByYear W20848469872016 @default.
- W2084846987 countsByYear W20848469872017 @default.
- W2084846987 countsByYear W20848469872018 @default.
- W2084846987 countsByYear W20848469872019 @default.
- W2084846987 countsByYear W20848469872020 @default.
- W2084846987 crossrefType "journal-article" @default.
- W2084846987 hasAuthorship W2084846987A5005904043 @default.
- W2084846987 hasAuthorship W2084846987A5035469601 @default.
- W2084846987 hasAuthorship W2084846987A5084932479 @default.
- W2084846987 hasConcept C124101348 @default.
- W2084846987 hasConcept C154945302 @default.
- W2084846987 hasConcept C199360897 @default.
- W2084846987 hasConcept C41008148 @default.
- W2084846987 hasConcept C73555534 @default.
- W2084846987 hasConcept C90559484 @default.
- W2084846987 hasConceptScore W2084846987C124101348 @default.
- W2084846987 hasConceptScore W2084846987C154945302 @default.
- W2084846987 hasConceptScore W2084846987C199360897 @default.
- W2084846987 hasConceptScore W2084846987C41008148 @default.
- W2084846987 hasConceptScore W2084846987C73555534 @default.
- W2084846987 hasConceptScore W2084846987C90559484 @default.
- W2084846987 hasLocation W20848469871 @default.
- W2084846987 hasOpenAccess W2084846987 @default.
- W2084846987 hasPrimaryLocation W20848469871 @default.
- W2084846987 hasRelatedWork W1979871427 @default.
- W2084846987 hasRelatedWork W1999627569 @default.
- W2084846987 hasRelatedWork W2187506573 @default.
- W2084846987 hasRelatedWork W2348097614 @default.
- W2084846987 hasRelatedWork W2354051833 @default.
- W2084846987 hasRelatedWork W2387405106 @default.
- W2084846987 hasRelatedWork W2392374020 @default.
- W2084846987 hasRelatedWork W3024886233 @default.
- W2084846987 hasRelatedWork W4243523185 @default.
- W2084846987 hasRelatedWork W763609066 @default.
- W2084846987 hasVolume "262" @default.
- W2084846987 isParatext "false" @default.
- W2084846987 isRetracted "false" @default.
- W2084846987 magId "2084846987" @default.
- W2084846987 workType "article" @default.