Matches in SemOpenAlex for { <https://semopenalex.org/work/W2084892865> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2084892865 endingPage "14" @default.
- W2084892865 startingPage "1" @default.
- W2084892865 abstract "Surface roughness, an indicator of surface quality, is one of the most specified customer requirements in machining of parts. In this study, the experimental results corresponding to the effects of different insert nose radii of cutting tools (0.4, 0.8, 1.2 mm), various depth of cuts (0.75, 1.25, 1.75, 2.25, 2.75 mm), and different feedrates (100, 130, 160, 190, 220 mm/min) on the surface quality of the AISI 1030 steel workpieces have been investigated using multiple regression analysis and artificial neural networks (ANN). Regression analysis and neural network-based models used for the prediction of surface roughness were compared for various cutting conditions in turning. The data set obtained from the measurements of surface roughness was employed to and tests the neural network model. The trained neural network models were used in predicting surface roughness for cutting conditions. A comparison of neural network models with regression model was carried out. Coefficient of determination was 0.98 in multiple regression model. The scaled conjugate gradient (SCG) model with 9 neurons in hidden layer has produced absolute fraction of variance<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>values of 0.999 for the training data, and 0.998 for the test data. Predictive neural network model showed better predictions than various regression models for surface roughness. However, both methods can be used for the prediction of surface roughness in turning." @default.
- W2084892865 created "2016-06-24" @default.
- W2084892865 creator A5003899436 @default.
- W2084892865 creator A5056661958 @default.
- W2084892865 creator A5068602653 @default.
- W2084892865 date "2007-01-01" @default.
- W2084892865 modified "2023-09-25" @default.
- W2084892865 title "Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning" @default.
- W2084892865 cites W1969529028 @default.
- W2084892865 cites W1982518978 @default.
- W2084892865 cites W1992024397 @default.
- W2084892865 cites W1999209109 @default.
- W2084892865 cites W2009773709 @default.
- W2084892865 cites W2010847571 @default.
- W2084892865 cites W2013851285 @default.
- W2084892865 cites W2014042018 @default.
- W2084892865 cites W2048167874 @default.
- W2084892865 cites W2162807413 @default.
- W2084892865 doi "https://doi.org/10.1155/2007/92717" @default.
- W2084892865 hasPublicationYear "2007" @default.
- W2084892865 type Work @default.
- W2084892865 sameAs 2084892865 @default.
- W2084892865 citedByCount "31" @default.
- W2084892865 countsByYear W20848928652013 @default.
- W2084892865 countsByYear W20848928652014 @default.
- W2084892865 countsByYear W20848928652015 @default.
- W2084892865 countsByYear W20848928652016 @default.
- W2084892865 countsByYear W20848928652018 @default.
- W2084892865 countsByYear W20848928652019 @default.
- W2084892865 countsByYear W20848928652020 @default.
- W2084892865 countsByYear W20848928652021 @default.
- W2084892865 countsByYear W20848928652022 @default.
- W2084892865 countsByYear W20848928652023 @default.
- W2084892865 crossrefType "journal-article" @default.
- W2084892865 hasAuthorship W2084892865A5003899436 @default.
- W2084892865 hasAuthorship W2084892865A5056661958 @default.
- W2084892865 hasAuthorship W2084892865A5068602653 @default.
- W2084892865 hasBestOaLocation W20848928651 @default.
- W2084892865 hasConcept C107365816 @default.
- W2084892865 hasConcept C11413529 @default.
- W2084892865 hasConcept C119857082 @default.
- W2084892865 hasConcept C128990827 @default.
- W2084892865 hasConcept C152877465 @default.
- W2084892865 hasConcept C154945302 @default.
- W2084892865 hasConcept C159985019 @default.
- W2084892865 hasConcept C192562407 @default.
- W2084892865 hasConcept C41008148 @default.
- W2084892865 hasConcept C48921125 @default.
- W2084892865 hasConcept C50644808 @default.
- W2084892865 hasConceptScore W2084892865C107365816 @default.
- W2084892865 hasConceptScore W2084892865C11413529 @default.
- W2084892865 hasConceptScore W2084892865C119857082 @default.
- W2084892865 hasConceptScore W2084892865C128990827 @default.
- W2084892865 hasConceptScore W2084892865C152877465 @default.
- W2084892865 hasConceptScore W2084892865C154945302 @default.
- W2084892865 hasConceptScore W2084892865C159985019 @default.
- W2084892865 hasConceptScore W2084892865C192562407 @default.
- W2084892865 hasConceptScore W2084892865C41008148 @default.
- W2084892865 hasConceptScore W2084892865C48921125 @default.
- W2084892865 hasConceptScore W2084892865C50644808 @default.
- W2084892865 hasLocation W20848928651 @default.
- W2084892865 hasLocation W20848928652 @default.
- W2084892865 hasOpenAccess W2084892865 @default.
- W2084892865 hasPrimaryLocation W20848928651 @default.
- W2084892865 hasRelatedWork W1521768418 @default.
- W2084892865 hasRelatedWork W158957646 @default.
- W2084892865 hasRelatedWork W2003085719 @default.
- W2084892865 hasRelatedWork W2070318872 @default.
- W2084892865 hasRelatedWork W2089787175 @default.
- W2084892865 hasRelatedWork W2103993022 @default.
- W2084892865 hasRelatedWork W2352101619 @default.
- W2084892865 hasRelatedWork W2387881743 @default.
- W2084892865 hasRelatedWork W2617105262 @default.
- W2084892865 hasRelatedWork W4317494332 @default.
- W2084892865 hasVolume "2007" @default.
- W2084892865 isParatext "false" @default.
- W2084892865 isRetracted "false" @default.
- W2084892865 magId "2084892865" @default.
- W2084892865 workType "article" @default.