Matches in SemOpenAlex for { <https://semopenalex.org/work/W2084946517> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2084946517 endingPage "1200" @default.
- W2084946517 startingPage "1171" @default.
- W2084946517 abstract "Combinatorial optimization problems are by nature very difficult to solve, and the Capacitated Minimum Spanning Tree problem is one such problem. Much work has been done in the management sciences to develop heuristic solution procedures that suboptimally solve large instances of the Capacitated Minimum Spanning Tree problem in a reasonable amount of time. The Capacitated Minimum Spanning Tree problem is used in this paper to develop and demonstrate a hybrid neural network methodology that incorporates heuristic methods into the neural network topological design. The heuristic procedure is embedded into the neural network topological design, and an iterative improvement process is performed using the neural network. The semi-relaxed energy function of the problem is used to develop a neural network weight adjustment procedure that modifies the problem costs. In three-quarters (75%) of our experiments, the hybrid neural networks produced better results than any of the traditional procedures tested. For solving combinatorial optimization problems, neural networks have traditionally been outperformed by traditional heuristic techniques developed specifically for the problem in question. This research is a step toward integrating the problem specific knowledge embedded in a traditional heuristic with the adaptive capabilities of neural networks. This is accomplished by creating a neural network topological design that embeds the steps of the traditional heuristic. The neural network learning then improves upon the performance of the embedded heuristic by modifying the neural weights attached to the embedded heuristic." @default.
- W2084946517 created "2016-06-24" @default.
- W2084946517 creator A5020415508 @default.
- W2084946517 creator A5085540118 @default.
- W2084946517 date "2000-09-01" @default.
- W2084946517 modified "2023-10-04" @default.
- W2084946517 title "Heuristic procedure neural networks for the CMST problem" @default.
- W2084946517 cites W1509099013 @default.
- W2084946517 cites W1536738170 @default.
- W2084946517 cites W1597286183 @default.
- W2084946517 cites W1606746496 @default.
- W2084946517 cites W1666636161 @default.
- W2084946517 cites W1963574949 @default.
- W2084946517 cites W1965680834 @default.
- W2084946517 cites W1972352354 @default.
- W2084946517 cites W1972674272 @default.
- W2084946517 cites W1973284970 @default.
- W2084946517 cites W2001912652 @default.
- W2084946517 cites W2005960525 @default.
- W2084946517 cites W2006935476 @default.
- W2084946517 cites W2010526455 @default.
- W2084946517 cites W2012682597 @default.
- W2084946517 cites W2017127755 @default.
- W2084946517 cites W2017927472 @default.
- W2084946517 cites W2019401519 @default.
- W2084946517 cites W2020602812 @default.
- W2084946517 cites W2050893476 @default.
- W2084946517 cites W2052862856 @default.
- W2084946517 cites W2064806410 @default.
- W2084946517 cites W2069318500 @default.
- W2084946517 cites W2103818573 @default.
- W2084946517 cites W2104431850 @default.
- W2084946517 cites W2114045721 @default.
- W2084946517 cites W2128110222 @default.
- W2084946517 cites W2141018803 @default.
- W2084946517 cites W2147580846 @default.
- W2084946517 cites W2164581054 @default.
- W2084946517 cites W4236384091 @default.
- W2084946517 cites W1866712623 @default.
- W2084946517 doi "https://doi.org/10.1016/s0305-0548(99)00145-8" @default.
- W2084946517 hasPublicationYear "2000" @default.
- W2084946517 type Work @default.
- W2084946517 sameAs 2084946517 @default.
- W2084946517 citedByCount "9" @default.
- W2084946517 countsByYear W20849465172012 @default.
- W2084946517 countsByYear W20849465172015 @default.
- W2084946517 crossrefType "journal-article" @default.
- W2084946517 hasAuthorship W2084946517A5020415508 @default.
- W2084946517 hasAuthorship W2084946517A5085540118 @default.
- W2084946517 hasConcept C113174947 @default.
- W2084946517 hasConcept C11413529 @default.
- W2084946517 hasConcept C114290370 @default.
- W2084946517 hasConcept C119857082 @default.
- W2084946517 hasConcept C126255220 @default.
- W2084946517 hasConcept C134306372 @default.
- W2084946517 hasConcept C147168706 @default.
- W2084946517 hasConcept C154945302 @default.
- W2084946517 hasConcept C173801870 @default.
- W2084946517 hasConcept C33923547 @default.
- W2084946517 hasConcept C41008148 @default.
- W2084946517 hasConcept C50644808 @default.
- W2084946517 hasConcept C52692508 @default.
- W2084946517 hasConcept C86582703 @default.
- W2084946517 hasConceptScore W2084946517C113174947 @default.
- W2084946517 hasConceptScore W2084946517C11413529 @default.
- W2084946517 hasConceptScore W2084946517C114290370 @default.
- W2084946517 hasConceptScore W2084946517C119857082 @default.
- W2084946517 hasConceptScore W2084946517C126255220 @default.
- W2084946517 hasConceptScore W2084946517C134306372 @default.
- W2084946517 hasConceptScore W2084946517C147168706 @default.
- W2084946517 hasConceptScore W2084946517C154945302 @default.
- W2084946517 hasConceptScore W2084946517C173801870 @default.
- W2084946517 hasConceptScore W2084946517C33923547 @default.
- W2084946517 hasConceptScore W2084946517C41008148 @default.
- W2084946517 hasConceptScore W2084946517C50644808 @default.
- W2084946517 hasConceptScore W2084946517C52692508 @default.
- W2084946517 hasConceptScore W2084946517C86582703 @default.
- W2084946517 hasIssue "11-12" @default.
- W2084946517 hasLocation W20849465171 @default.
- W2084946517 hasOpenAccess W2084946517 @default.
- W2084946517 hasPrimaryLocation W20849465171 @default.
- W2084946517 hasRelatedWork W2084946517 @default.
- W2084946517 hasRelatedWork W2106556139 @default.
- W2084946517 hasRelatedWork W2113857227 @default.
- W2084946517 hasRelatedWork W2386387936 @default.
- W2084946517 hasRelatedWork W2605663176 @default.
- W2084946517 hasRelatedWork W2945975677 @default.
- W2084946517 hasRelatedWork W3097679996 @default.
- W2084946517 hasRelatedWork W3161231593 @default.
- W2084946517 hasRelatedWork W4297359432 @default.
- W2084946517 hasRelatedWork W836555340 @default.
- W2084946517 hasVolume "27" @default.
- W2084946517 isParatext "false" @default.
- W2084946517 isRetracted "false" @default.
- W2084946517 magId "2084946517" @default.
- W2084946517 workType "article" @default.