Matches in SemOpenAlex for { <https://semopenalex.org/work/W2084970168> ?p ?o ?g. }
- W2084970168 endingPage "120" @default.
- W2084970168 startingPage "1" @default.
- W2084970168 abstract "This review summarizes the optical, electromagnetic, and acoustic imaging techniques that are in use or available for mapping convection, temperature, and solute concentration in the solution around a growing crystal and for measuring the growth rate and the facial micromorphology of the crystal itself. By way of introduction, the need for such mapping, the value of optical, electromagnetic, and acoustic techniques, and the comparative value of two- vs. three-dimensional mapping are discussed. Then, the phenomenology of crystal growth from solution is briefly reviewed with emphasis on the effect of convection and gravity. Next, for each type of measurement, the techniques are described and representative examples of application to crystal growth research are cited. Convection can be mapped by measuring refractive index differences (shadowgraphy, schlieren, interferometry and holography), solute concentration (absorption photometry), displacements (particles, laser speckle, bubbles, and dye markers), or velocity (laser Doppler velocimetry and particle image velocimetry). Since the profound effects of buoyant convection were the primary motive for NASA's spaceflight experiments on crystal growth, the optical techniques used in this program and results thereof are discussed in some detail for both inorganic and protein crystallization. Solution temperature can be mapped by physical probes, liquid crystal thermography, thermochromism, fluorescence, interferometric, or ultrasonic techniques. Solution concentration can be mapped by phase shifting interferometry, electronic speckle pattern interferometry, or optical absorption. Simultaneous measurement of temperature and concentration can be performed using dual-wavelength interferometry or a combination of absorption and interferometry. There has to date been relatively little use of these techniques in crystal growth research. The measurement of the growth rate and the mapping of facial micromorphology are feasible by low-precision techniques (acoustic reflection, optical rotation, and cathetometry), by various forms and combinations of microscopy and interferometry, and by atomic-level techniques such as atomic force microscopy and X-ray or electron microscopy. Post-growth techniques (optical, electron, and scanning probe microscopy, X-ray diffraction topography, growth band analysis, and light-scattering tomography) are briefly mentioned. The application of these techniques to crystal growth research is briefly summarized. Some modes of measurement can be extended to three-dimensional imaging by holography, point-by-point scanning, planar slice imaging, or computerized axial tomography (CAT). Of these, the most promising appear to be magnetic resonance imaging (MRI), magnetic gradient discrimination of optical image depth, and optical CAT. These techniques are therefore discussed in some detail. In particular, the recent work of one of the authors (SV) on the application of shadowgraph and interferometric CAT techniques to crystal growth experiments is herein presented in some detail. This review appears to show that, although some optical techniques have been extensively used to study crystal growth from solution, many other promising techniques have yet to be explored. A representative bibliography of over 600 publications and websites is included." @default.
- W2084970168 created "2016-06-24" @default.
- W2084970168 creator A5002349914 @default.
- W2084970168 creator A5084919770 @default.
- W2084970168 date "2008-03-01" @default.
- W2084970168 modified "2023-10-18" @default.
- W2084970168 title "Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution" @default.
- W2084970168 cites W103877667 @default.
- W2084970168 cites W1490431219 @default.
- W2084970168 cites W1530868865 @default.
- W2084970168 cites W1554687089 @default.
- W2084970168 cites W1596646350 @default.
- W2084970168 cites W1626533966 @default.
- W2084970168 cites W1628318423 @default.
- W2084970168 cites W1631080505 @default.
- W2084970168 cites W1636846198 @default.
- W2084970168 cites W1650657666 @default.
- W2084970168 cites W1664855851 @default.
- W2084970168 cites W1671242952 @default.
- W2084970168 cites W1672669871 @default.
- W2084970168 cites W1673966000 @default.
- W2084970168 cites W1963660338 @default.
- W2084970168 cites W1963901988 @default.
- W2084970168 cites W1964400133 @default.
- W2084970168 cites W1964462936 @default.
- W2084970168 cites W1964616790 @default.
- W2084970168 cites W1964659396 @default.
- W2084970168 cites W1964855627 @default.
- W2084970168 cites W1964944910 @default.
- W2084970168 cites W1965571863 @default.
- W2084970168 cites W1966098547 @default.
- W2084970168 cites W1966391973 @default.
- W2084970168 cites W1966505666 @default.
- W2084970168 cites W1967183121 @default.
- W2084970168 cites W1967622839 @default.
- W2084970168 cites W1968361618 @default.
- W2084970168 cites W1968543928 @default.
- W2084970168 cites W1968762478 @default.
- W2084970168 cites W1969092718 @default.
- W2084970168 cites W1969560905 @default.
- W2084970168 cites W1970232684 @default.
- W2084970168 cites W1970481760 @default.
- W2084970168 cites W1970786696 @default.
- W2084970168 cites W1970793826 @default.
- W2084970168 cites W1971439905 @default.
- W2084970168 cites W1971734829 @default.
- W2084970168 cites W1972246936 @default.
- W2084970168 cites W1972450775 @default.
- W2084970168 cites W1972746119 @default.
- W2084970168 cites W1973038344 @default.
- W2084970168 cites W1973396557 @default.
- W2084970168 cites W1974184295 @default.
- W2084970168 cites W1974245045 @default.
- W2084970168 cites W1974927084 @default.
- W2084970168 cites W1975380106 @default.
- W2084970168 cites W1976448150 @default.
- W2084970168 cites W1976903948 @default.
- W2084970168 cites W1977951283 @default.
- W2084970168 cites W1978591226 @default.
- W2084970168 cites W1978948030 @default.
- W2084970168 cites W1979081507 @default.
- W2084970168 cites W1979150700 @default.
- W2084970168 cites W1980020564 @default.
- W2084970168 cites W1980311332 @default.
- W2084970168 cites W1980437229 @default.
- W2084970168 cites W1980617746 @default.
- W2084970168 cites W1980774072 @default.
- W2084970168 cites W1980777358 @default.
- W2084970168 cites W1982148279 @default.
- W2084970168 cites W1982533732 @default.
- W2084970168 cites W1983878220 @default.
- W2084970168 cites W1983900057 @default.
- W2084970168 cites W1983966740 @default.
- W2084970168 cites W1984361299 @default.
- W2084970168 cites W1984552686 @default.
- W2084970168 cites W1984865559 @default.
- W2084970168 cites W1985612331 @default.
- W2084970168 cites W1985647380 @default.
- W2084970168 cites W1985681029 @default.
- W2084970168 cites W1986545144 @default.
- W2084970168 cites W1987265538 @default.
- W2084970168 cites W1987398820 @default.
- W2084970168 cites W1989086523 @default.
- W2084970168 cites W1989703213 @default.
- W2084970168 cites W1989719421 @default.
- W2084970168 cites W1990421976 @default.
- W2084970168 cites W1990540960 @default.
- W2084970168 cites W1990560003 @default.
- W2084970168 cites W1990647752 @default.
- W2084970168 cites W1991101760 @default.
- W2084970168 cites W1991971379 @default.
- W2084970168 cites W1992111726 @default.
- W2084970168 cites W1992607955 @default.
- W2084970168 cites W1992856730 @default.
- W2084970168 cites W1992938034 @default.
- W2084970168 cites W1993813166 @default.
- W2084970168 cites W1993968798 @default.
- W2084970168 cites W1994481632 @default.