Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085007002> ?p ?o ?g. }
- W2085007002 endingPage "598" @default.
- W2085007002 startingPage "579" @default.
- W2085007002 abstract "Some neural network related methods have been applied to nonlinear fuzzy regression analysis by several investigators. The performance of these methods will significantly worsen when the outliers exist in the training data set. In this paper, we propose a training algorithm for fuzzy neural networks with general fuzzy number weights, biases, inputs and outputs for computation of nonlinear fuzzy regression models. First, we define a cost function that is based on the concept of possibility of fuzzy equality between the fuzzy output of fuzzy neural network and the corresponding fuzzy target. Next, a training algorithm is derived from the cost function in a similar manner as the back-propagation algorithm. Last, we examine the ability of our approach by computer simulations on numerical examples. Simulation results show that the proposed algorithm is able to reduce the outlier effects." @default.
- W2085007002 created "2016-06-24" @default.
- W2085007002 creator A5013187439 @default.
- W2085007002 creator A5075020884 @default.
- W2085007002 date "2008-08-01" @default.
- W2085007002 modified "2023-10-01" @default.
- W2085007002 title "ROBUST FUZZY REGRESSION ANALYSIS USING NEURAL NETWORKS" @default.
- W2085007002 cites W1498436455 @default.
- W2085007002 cites W1988115241 @default.
- W2085007002 cites W1997583372 @default.
- W2085007002 cites W2003699104 @default.
- W2085007002 cites W2020610055 @default.
- W2085007002 cites W2023948527 @default.
- W2085007002 cites W2027232914 @default.
- W2085007002 cites W2031003331 @default.
- W2085007002 cites W2037972590 @default.
- W2085007002 cites W2039904328 @default.
- W2085007002 cites W2041764623 @default.
- W2085007002 cites W2046307773 @default.
- W2085007002 cites W2046989272 @default.
- W2085007002 cites W2049058890 @default.
- W2085007002 cites W2056611606 @default.
- W2085007002 cites W2063952558 @default.
- W2085007002 cites W2071974562 @default.
- W2085007002 cites W2078538587 @default.
- W2085007002 cites W2080710915 @default.
- W2085007002 cites W2093664168 @default.
- W2085007002 cites W2110944184 @default.
- W2085007002 cites W2130913096 @default.
- W2085007002 cites W2132225553 @default.
- W2085007002 cites W2489822048 @default.
- W2085007002 cites W4302438448 @default.
- W2085007002 doi "https://doi.org/10.1142/s021848850800542x" @default.
- W2085007002 hasPublicationYear "2008" @default.
- W2085007002 type Work @default.
- W2085007002 sameAs 2085007002 @default.
- W2085007002 citedByCount "32" @default.
- W2085007002 countsByYear W20850070022012 @default.
- W2085007002 countsByYear W20850070022013 @default.
- W2085007002 countsByYear W20850070022014 @default.
- W2085007002 countsByYear W20850070022015 @default.
- W2085007002 countsByYear W20850070022016 @default.
- W2085007002 countsByYear W20850070022018 @default.
- W2085007002 countsByYear W20850070022019 @default.
- W2085007002 countsByYear W20850070022020 @default.
- W2085007002 countsByYear W20850070022021 @default.
- W2085007002 countsByYear W20850070022022 @default.
- W2085007002 countsByYear W20850070022023 @default.
- W2085007002 crossrefType "journal-article" @default.
- W2085007002 hasAuthorship W2085007002A5013187439 @default.
- W2085007002 hasAuthorship W2085007002A5075020884 @default.
- W2085007002 hasConcept C119857082 @default.
- W2085007002 hasConcept C124101348 @default.
- W2085007002 hasConcept C127385683 @default.
- W2085007002 hasConcept C148671577 @default.
- W2085007002 hasConcept C154945302 @default.
- W2085007002 hasConcept C170260401 @default.
- W2085007002 hasConcept C186108316 @default.
- W2085007002 hasConcept C1883856 @default.
- W2085007002 hasConcept C195975749 @default.
- W2085007002 hasConcept C29470771 @default.
- W2085007002 hasConcept C41008148 @default.
- W2085007002 hasConcept C42011625 @default.
- W2085007002 hasConcept C50644808 @default.
- W2085007002 hasConcept C5263885 @default.
- W2085007002 hasConcept C58166 @default.
- W2085007002 hasConcept C79337645 @default.
- W2085007002 hasConceptScore W2085007002C119857082 @default.
- W2085007002 hasConceptScore W2085007002C124101348 @default.
- W2085007002 hasConceptScore W2085007002C127385683 @default.
- W2085007002 hasConceptScore W2085007002C148671577 @default.
- W2085007002 hasConceptScore W2085007002C154945302 @default.
- W2085007002 hasConceptScore W2085007002C170260401 @default.
- W2085007002 hasConceptScore W2085007002C186108316 @default.
- W2085007002 hasConceptScore W2085007002C1883856 @default.
- W2085007002 hasConceptScore W2085007002C195975749 @default.
- W2085007002 hasConceptScore W2085007002C29470771 @default.
- W2085007002 hasConceptScore W2085007002C41008148 @default.
- W2085007002 hasConceptScore W2085007002C42011625 @default.
- W2085007002 hasConceptScore W2085007002C50644808 @default.
- W2085007002 hasConceptScore W2085007002C5263885 @default.
- W2085007002 hasConceptScore W2085007002C58166 @default.
- W2085007002 hasConceptScore W2085007002C79337645 @default.
- W2085007002 hasIssue "04" @default.
- W2085007002 hasLocation W20850070021 @default.
- W2085007002 hasOpenAccess W2085007002 @default.
- W2085007002 hasPrimaryLocation W20850070021 @default.
- W2085007002 hasRelatedWork W1976608231 @default.
- W2085007002 hasRelatedWork W2023502885 @default.
- W2085007002 hasRelatedWork W2061828243 @default.
- W2085007002 hasRelatedWork W2109441327 @default.
- W2085007002 hasRelatedWork W2120636838 @default.
- W2085007002 hasRelatedWork W2127219783 @default.
- W2085007002 hasRelatedWork W2134764547 @default.
- W2085007002 hasRelatedWork W2135891541 @default.
- W2085007002 hasRelatedWork W2164589519 @default.
- W2085007002 hasRelatedWork W2592502698 @default.
- W2085007002 hasVolume "16" @default.