Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085035738> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2085035738 endingPage "3140" @default.
- W2085035738 startingPage "3139" @default.
- W2085035738 abstract "With the advent of modern computers, progress in theoretical methodologies and numerical algorithms, Computational Chemistry has become a standard branch of research in chemistry over the last twenty years. The development of user-friendly program packages paved the road to its current widespread daily application in experimental laboratories as a standard research tool. Ground-state quantum chemical computations of typical isolated molecules are straightforward and deliver results with good accuracy and reliability, especially for organic systems. Much effort in the theory community has now shifted to more intricate phenomena, such as excited electronic states or the description of chemistry in condensed phases, which still require a great amount of expert knowledge. For instance, the theoretical investigation of electronic excited states of medium-sized and large organic or biomolecules is an inherently difficult problem due to the complex electronic structure. At present, no black-box method exists that allows for the reliable computation of the plethora of excited states exhibiting different electronic structures such as ππ*, nπ*, charge transfer, Rydberg, formally singly excited or doubly excited states. Most existing quantum chemical methods are only well suited to describe one or a few classes of states, and hence, great experience and expert knowledge is still required to successfully study photophysical aspects of large molecular systems. For organic and biological photochemistry, “just calculating” electronic excited states is not enough. Photochemistry is often dominated by nuclear dynamics, which usually occurs on an ultra-fast timescale, further complicating the theoretical investigation of photo-initiated chemical processes. Today it is well known that ultra-fast excited-state dynamics are usually driven by so-called conical intersections, special topologies of potential surfaces, which require special electronic structure methods and special attention. The same is true for the theoretical investigation of molecular properties and reactions in condensed phases, when the interactions between the molecule of interest and the environment are not negligible and affect properties or even determine the outcome of chemical reactions, for example. Also, both chemistry and biology typically happen in condensed phase. For theoretical simulations to be useful in these areas of science, it is thus of utmost importance that the environment is taken into account within the computations. Hence, not surprisingly, ever more sophisticated theoretical developments could be observed during recent years addressing precisely these issues. Computational methods like polarizable continuum models (PCM), combined quantum mechanical/classical mechanical (QM/MM) methods, density-embedding methodologies, and effective fragment potentials, to name a few, are being developed. Of course, each model has been designed for specific types of applications, and concomitantly also has weaknesses. The development of models for condensed phases is one of the most active fields of research in Theoretical Chemistry. Even seemingly simple problems like calculations of ground-state reaction paths are highly non-trivial in complex molecular systems because of the large number of degrees of freedom. Applying standard algorithms for finding transition states may be hopeless in such cases. As a consequence, the theory community needs to supply innovative techniques for investigations of properties, reactivity, and dynamics of complex systems. In this special issue, twenty-two contributions are compiled addressing the above-mentioned challenges of contemporary computational chemistry. Developments of environmental models comprising the fields of QM/MM methodology, PCM technology and density embedding are presented alongside state-of-the-art applications of these theoretical approaches to challenging questions for systems ranging from small organic molecules up to large biological proteins. Also dynamical questions in photochemical problems are addressed with the help of ab initio molecular dynamics (AIMD) and in proteins using classical mechanics. The issue is completed by novel methods for studying reaction barriers and spectroscopic techniques suited for molecules of increasing complexity." @default.
- W2085035738 created "2016-06-24" @default.
- W2085035738 creator A5040293891 @default.
- W2085035738 creator A5047451884 @default.
- W2085035738 creator A5055104752 @default.
- W2085035738 date "2014-10-10" @default.
- W2085035738 modified "2023-10-10" @default.
- W2085035738 title "Calculation of Complex Bio- and Organic Systems: From Ground-State Reactivity and Spectroscopy to Excited-State Dynamics" @default.
- W2085035738 doi "https://doi.org/10.1002/cphc.201402644" @default.
- W2085035738 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25302818" @default.
- W2085035738 hasPublicationYear "2014" @default.
- W2085035738 type Work @default.
- W2085035738 sameAs 2085035738 @default.
- W2085035738 citedByCount "3" @default.
- W2085035738 countsByYear W20850357382015 @default.
- W2085035738 countsByYear W20850357382016 @default.
- W2085035738 crossrefType "journal-article" @default.
- W2085035738 hasAuthorship W2085035738A5040293891 @default.
- W2085035738 hasAuthorship W2085035738A5047451884 @default.
- W2085035738 hasAuthorship W2085035738A5055104752 @default.
- W2085035738 hasBestOaLocation W20850357381 @default.
- W2085035738 hasConcept C11413529 @default.
- W2085035738 hasConcept C121332964 @default.
- W2085035738 hasConcept C142724271 @default.
- W2085035738 hasConcept C145912823 @default.
- W2085035738 hasConcept C147597530 @default.
- W2085035738 hasConcept C159467904 @default.
- W2085035738 hasConcept C181500209 @default.
- W2085035738 hasConcept C184779094 @default.
- W2085035738 hasConcept C185592680 @default.
- W2085035738 hasConcept C192562407 @default.
- W2085035738 hasConcept C204787440 @default.
- W2085035738 hasConcept C24890656 @default.
- W2085035738 hasConcept C2776910235 @default.
- W2085035738 hasConcept C32891209 @default.
- W2085035738 hasConcept C41008148 @default.
- W2085035738 hasConcept C48103436 @default.
- W2085035738 hasConcept C62520636 @default.
- W2085035738 hasConcept C69523127 @default.
- W2085035738 hasConcept C71924100 @default.
- W2085035738 hasConcept C75473681 @default.
- W2085035738 hasConceptScore W2085035738C11413529 @default.
- W2085035738 hasConceptScore W2085035738C121332964 @default.
- W2085035738 hasConceptScore W2085035738C142724271 @default.
- W2085035738 hasConceptScore W2085035738C145912823 @default.
- W2085035738 hasConceptScore W2085035738C147597530 @default.
- W2085035738 hasConceptScore W2085035738C159467904 @default.
- W2085035738 hasConceptScore W2085035738C181500209 @default.
- W2085035738 hasConceptScore W2085035738C184779094 @default.
- W2085035738 hasConceptScore W2085035738C185592680 @default.
- W2085035738 hasConceptScore W2085035738C192562407 @default.
- W2085035738 hasConceptScore W2085035738C204787440 @default.
- W2085035738 hasConceptScore W2085035738C24890656 @default.
- W2085035738 hasConceptScore W2085035738C2776910235 @default.
- W2085035738 hasConceptScore W2085035738C32891209 @default.
- W2085035738 hasConceptScore W2085035738C41008148 @default.
- W2085035738 hasConceptScore W2085035738C48103436 @default.
- W2085035738 hasConceptScore W2085035738C62520636 @default.
- W2085035738 hasConceptScore W2085035738C69523127 @default.
- W2085035738 hasConceptScore W2085035738C71924100 @default.
- W2085035738 hasConceptScore W2085035738C75473681 @default.
- W2085035738 hasIssue "15" @default.
- W2085035738 hasLocation W20850357381 @default.
- W2085035738 hasLocation W20850357382 @default.
- W2085035738 hasOpenAccess W2085035738 @default.
- W2085035738 hasPrimaryLocation W20850357381 @default.
- W2085035738 hasRelatedWork W128302402 @default.
- W2085035738 hasRelatedWork W1562895212 @default.
- W2085035738 hasRelatedWork W1671397025 @default.
- W2085035738 hasRelatedWork W1991209665 @default.
- W2085035738 hasRelatedWork W2000843513 @default.
- W2085035738 hasRelatedWork W2029053334 @default.
- W2085035738 hasRelatedWork W2057955961 @default.
- W2085035738 hasRelatedWork W2060875611 @default.
- W2085035738 hasRelatedWork W2076720177 @default.
- W2085035738 hasRelatedWork W2114316337 @default.
- W2085035738 hasRelatedWork W2123170390 @default.
- W2085035738 hasRelatedWork W2610555891 @default.
- W2085035738 hasRelatedWork W2765161934 @default.
- W2085035738 hasRelatedWork W2952518551 @default.
- W2085035738 hasRelatedWork W3080139570 @default.
- W2085035738 hasRelatedWork W3114113386 @default.
- W2085035738 hasRelatedWork W3185716801 @default.
- W2085035738 hasRelatedWork W610478703 @default.
- W2085035738 hasRelatedWork W64359065 @default.
- W2085035738 hasRelatedWork W3090749293 @default.
- W2085035738 hasVolume "15" @default.
- W2085035738 isParatext "false" @default.
- W2085035738 isRetracted "false" @default.
- W2085035738 magId "2085035738" @default.
- W2085035738 workType "article" @default.