Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085097105> ?p ?o ?g. }
- W2085097105 endingPage "2010" @default.
- W2085097105 startingPage "1994" @default.
- W2085097105 abstract "For improving the classification performance on the cheap, it is necessary to exploit both labeled and unlabeled samples by applying semi-supervised learning methods, most of which are built upon the pair-wise similarities between the samples. While the similarities have so far been formulated in a heuristic manner such as by k-NN, we propose methods to construct similarities from the probabilistic viewpoint. The kernel-based formulation of a transition probability is first proposed via comparing kernel least squares to variational least squares in the probabilistic framework. The formulation results in a simple quadratic programming which flexibly introduces the constraint to improve practical robustness and is efficiently computed by SMO. The kernel-based transition probability is by nature favorably sparse even without applying k-NN and induces the similarity measure of the same characteristics. Besides, to cope with multiple types of kernel functions, the multiple transition probabilities obtained correspondingly from the kernels can be probabilistically integrated with prior probabilities represented by linear weights. We propose a computationally efficient method to optimize the weights in a discriminative manner. The optimized weights contribute to a composite similarity measure straightforwardly as well as to integrate the multiple kernels themselves as multiple kernel learning does, which consequently derives various types of multiple kernel based semi-supervised classification methods. In the experiments on semi-supervised classification tasks, the proposed methods demonstrate favorable performances, compared to the other methods, in terms of classification performances and computation time." @default.
- W2085097105 created "2016-06-24" @default.
- W2085097105 creator A5069526951 @default.
- W2085097105 date "2014-05-01" @default.
- W2085097105 modified "2023-09-27" @default.
- W2085097105 title "Kernel-based transition probability toward similarity measure for semi-supervised learning" @default.
- W2085097105 cites W1479807131 @default.
- W2085097105 cites W1510147702 @default.
- W2085097105 cites W1512098439 @default.
- W2085097105 cites W1513369270 @default.
- W2085097105 cites W1549656520 @default.
- W2085097105 cites W1560724230 @default.
- W2085097105 cites W1576445103 @default.
- W2085097105 cites W1582256674 @default.
- W2085097105 cites W1601807574 @default.
- W2085097105 cites W1663639025 @default.
- W2085097105 cites W1663973292 @default.
- W2085097105 cites W1965555277 @default.
- W2085097105 cites W1966385142 @default.
- W2085097105 cites W1969198379 @default.
- W2085097105 cites W1970088130 @default.
- W2085097105 cites W1985222382 @default.
- W2085097105 cites W1990797646 @default.
- W2085097105 cites W2014930414 @default.
- W2085097105 cites W2027811869 @default.
- W2085097105 cites W2048120744 @default.
- W2085097105 cites W2048679005 @default.
- W2085097105 cites W2055838421 @default.
- W2085097105 cites W2097308346 @default.
- W2085097105 cites W2098098075 @default.
- W2085097105 cites W2100659887 @default.
- W2085097105 cites W2102331280 @default.
- W2085097105 cites W2104290444 @default.
- W2085097105 cites W2105831998 @default.
- W2085097105 cites W2115733720 @default.
- W2085097105 cites W2124372976 @default.
- W2085097105 cites W2137313500 @default.
- W2085097105 cites W2138312771 @default.
- W2085097105 cites W2139823104 @default.
- W2085097105 cites W2145295623 @default.
- W2085097105 cites W2146372502 @default.
- W2085097105 cites W2148603752 @default.
- W2085097105 cites W2151532250 @default.
- W2085097105 cites W2153509747 @default.
- W2085097105 cites W2153635508 @default.
- W2085097105 cites W2153927146 @default.
- W2085097105 cites W2157629193 @default.
- W2085097105 cites W2163584563 @default.
- W2085097105 cites W2167665791 @default.
- W2085097105 cites W2538008885 @default.
- W2085097105 cites W2543728464 @default.
- W2085097105 doi "https://doi.org/10.1016/j.patcog.2013.11.011" @default.
- W2085097105 hasPublicationYear "2014" @default.
- W2085097105 type Work @default.
- W2085097105 sameAs 2085097105 @default.
- W2085097105 citedByCount "8" @default.
- W2085097105 countsByYear W20850971052014 @default.
- W2085097105 countsByYear W20850971052015 @default.
- W2085097105 countsByYear W20850971052016 @default.
- W2085097105 countsByYear W20850971052019 @default.
- W2085097105 crossrefType "journal-article" @default.
- W2085097105 hasAuthorship W2085097105A5069526951 @default.
- W2085097105 hasConcept C103278499 @default.
- W2085097105 hasConcept C105795698 @default.
- W2085097105 hasConcept C114614502 @default.
- W2085097105 hasConcept C115961682 @default.
- W2085097105 hasConcept C119857082 @default.
- W2085097105 hasConcept C124101348 @default.
- W2085097105 hasConcept C153180895 @default.
- W2085097105 hasConcept C154945302 @default.
- W2085097105 hasConcept C204321447 @default.
- W2085097105 hasConcept C21031990 @default.
- W2085097105 hasConcept C2776517306 @default.
- W2085097105 hasConcept C2780009758 @default.
- W2085097105 hasConcept C33923547 @default.
- W2085097105 hasConcept C41008148 @default.
- W2085097105 hasConcept C58973888 @default.
- W2085097105 hasConcept C74193536 @default.
- W2085097105 hasConceptScore W2085097105C103278499 @default.
- W2085097105 hasConceptScore W2085097105C105795698 @default.
- W2085097105 hasConceptScore W2085097105C114614502 @default.
- W2085097105 hasConceptScore W2085097105C115961682 @default.
- W2085097105 hasConceptScore W2085097105C119857082 @default.
- W2085097105 hasConceptScore W2085097105C124101348 @default.
- W2085097105 hasConceptScore W2085097105C153180895 @default.
- W2085097105 hasConceptScore W2085097105C154945302 @default.
- W2085097105 hasConceptScore W2085097105C204321447 @default.
- W2085097105 hasConceptScore W2085097105C21031990 @default.
- W2085097105 hasConceptScore W2085097105C2776517306 @default.
- W2085097105 hasConceptScore W2085097105C2780009758 @default.
- W2085097105 hasConceptScore W2085097105C33923547 @default.
- W2085097105 hasConceptScore W2085097105C41008148 @default.
- W2085097105 hasConceptScore W2085097105C58973888 @default.
- W2085097105 hasConceptScore W2085097105C74193536 @default.
- W2085097105 hasIssue "5" @default.
- W2085097105 hasLocation W20850971051 @default.
- W2085097105 hasOpenAccess W2085097105 @default.
- W2085097105 hasPrimaryLocation W20850971051 @default.