Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085103921> ?p ?o ?g. }
- W2085103921 endingPage "15" @default.
- W2085103921 startingPage "1" @default.
- W2085103921 abstract "Abstract The Eocene Green River Formation represents a system of lakes that covered parts of what is now Wyoming, Colorado, and Utah, and captures the Early Eocene Climatic Optimum (EECO, 52–50 million years ago or Ma), the warmest period of the Cenozoic Era, and a period associated with very high levels of atmospheric CO2. Lakes, especially closed basin lakes, can respond dramatically to environmental change because of their sensitivity to precipitation and evaporation. In this study, stromatolites from the Rife Bed of the Green River Formation are used as fine-scale records of terrestrial paleoenvironmental change during a global hothouse climate, and to investigate how the environmental dynamics within the lake system affected the growth of stromatolites. The stromatolites are composed of branching microdigitate columns laminated on the 10–100 μm scale. Laminae are grouped in cm-scale layers that alternate between calcite fan, micritic, and mixed microstructures. The fan layers are depleted in 18O, Na, and Mg/Ca. The micrite layers, in contrast, are comparatively enriched in 18O, Na, and Mg/Ca. The δ13C and δ18O are strongly positively correlated, suggesting the stromatolites formed in a closed basin lake, consistent with the regional stratigraphy. Additionally, clumped isotope analyses provide the first quantitative values for water temperatures in lake water from the Green River Formation (~ 35 °C for micrite layers and ~ 28 °C for fan layers). Changes in δ18O and sodium ion concentration are likely related to periods of evaporation and recharge, and thus can be used to estimate lake volume change during stromatolite growth. Two models, one using sodium ion concentrations in a conserved system, the other using Rayleigh fractionation and mixing equations to explain changes in oxygen isotopes, converge upon similar results for lake volume changes, revealing multiple episodes of meter-scale lake level rise and fall during the accretion of the ~ 30 cm thick stromatolite. Because of the broad, flat bathymetry of the lake, such lake volume and depth changes would have been accompanied by shoreline shifts on the order of tens of kilometers while the stromatolites were actively growing, challenging the view of a single stromatolite paleoenvironment in the lake. Therefore, the fan microfabric, interpreted here as abiogenic in nature, formed in cooler waters when the lake was deeper, possibly below a thermocline. In contrast, the micrite microfabric, for which there is evidence of biogenicity, formed when the lake was shallow and warm. The alternation between biogenic and abiogenic microfabrics present in the Rife Bed stromatolites is hypothesized to result from dramatic changes in lake level influencing the microbiology and chemistry of the waters in which the stromatolites formed, indicating that stromatolite growth can occur under disparate conditions and therefore does not necessarily represent a single facies." @default.
- W2085103921 created "2016-06-24" @default.
- W2085103921 creator A5000983151 @default.
- W2085103921 creator A5023442531 @default.
- W2085103921 creator A5031524442 @default.
- W2085103921 creator A5034607374 @default.
- W2085103921 creator A5059331743 @default.
- W2085103921 creator A5085874770 @default.
- W2085103921 date "2014-07-01" @default.
- W2085103921 modified "2023-09-26" @default.
- W2085103921 title "Dramatic local environmental change during the Early Eocene Climatic Optimum detected using high resolution chemical analyses of Green River Formation stromatolites" @default.
- W2085103921 cites W1532048909 @default.
- W2085103921 cites W1581099441 @default.
- W2085103921 cites W1751304872 @default.
- W2085103921 cites W1963716507 @default.
- W2085103921 cites W1967628674 @default.
- W2085103921 cites W1967839010 @default.
- W2085103921 cites W1977461880 @default.
- W2085103921 cites W1981161040 @default.
- W2085103921 cites W1984181305 @default.
- W2085103921 cites W1984873830 @default.
- W2085103921 cites W199254709 @default.
- W2085103921 cites W1993898064 @default.
- W2085103921 cites W1995913684 @default.
- W2085103921 cites W2001087603 @default.
- W2085103921 cites W2001912393 @default.
- W2085103921 cites W2005649253 @default.
- W2085103921 cites W2007933701 @default.
- W2085103921 cites W2017009583 @default.
- W2085103921 cites W2017602573 @default.
- W2085103921 cites W2017913935 @default.
- W2085103921 cites W2041951553 @default.
- W2085103921 cites W2046020514 @default.
- W2085103921 cites W2055442076 @default.
- W2085103921 cites W2060161337 @default.
- W2085103921 cites W2065456918 @default.
- W2085103921 cites W2066115290 @default.
- W2085103921 cites W2068171707 @default.
- W2085103921 cites W2073480393 @default.
- W2085103921 cites W2074981976 @default.
- W2085103921 cites W2083882089 @default.
- W2085103921 cites W2085221298 @default.
- W2085103921 cites W2087301678 @default.
- W2085103921 cites W2089746913 @default.
- W2085103921 cites W2106839072 @default.
- W2085103921 cites W2112191716 @default.
- W2085103921 cites W2115575384 @default.
- W2085103921 cites W2117559107 @default.
- W2085103921 cites W2117586485 @default.
- W2085103921 cites W2118131194 @default.
- W2085103921 cites W2118931596 @default.
- W2085103921 cites W2119468077 @default.
- W2085103921 cites W2121783130 @default.
- W2085103921 cites W2132295818 @default.
- W2085103921 cites W2140488683 @default.
- W2085103921 cites W2142539052 @default.
- W2085103921 cites W2143539806 @default.
- W2085103921 cites W2148065696 @default.
- W2085103921 cites W2149736100 @default.
- W2085103921 cites W2153683587 @default.
- W2085103921 cites W2155995866 @default.
- W2085103921 cites W2157657568 @default.
- W2085103921 cites W2160584133 @default.
- W2085103921 cites W2318042047 @default.
- W2085103921 cites W300313049 @default.
- W2085103921 cites W95274376 @default.
- W2085103921 doi "https://doi.org/10.1016/j.palaeo.2014.04.001" @default.
- W2085103921 hasPublicationYear "2014" @default.
- W2085103921 type Work @default.
- W2085103921 sameAs 2085103921 @default.
- W2085103921 citedByCount "50" @default.
- W2085103921 countsByYear W20851039212014 @default.
- W2085103921 countsByYear W20851039212015 @default.
- W2085103921 countsByYear W20851039212016 @default.
- W2085103921 countsByYear W20851039212017 @default.
- W2085103921 countsByYear W20851039212018 @default.
- W2085103921 countsByYear W20851039212019 @default.
- W2085103921 countsByYear W20851039212020 @default.
- W2085103921 countsByYear W20851039212021 @default.
- W2085103921 countsByYear W20851039212022 @default.
- W2085103921 countsByYear W20851039212023 @default.
- W2085103921 crossrefType "journal-article" @default.
- W2085103921 hasAuthorship W2085103921A5000983151 @default.
- W2085103921 hasAuthorship W2085103921A5023442531 @default.
- W2085103921 hasAuthorship W2085103921A5031524442 @default.
- W2085103921 hasAuthorship W2085103921A5034607374 @default.
- W2085103921 hasAuthorship W2085103921A5059331743 @default.
- W2085103921 hasAuthorship W2085103921A5085874770 @default.
- W2085103921 hasConcept C109007969 @default.
- W2085103921 hasConcept C111368507 @default.
- W2085103921 hasConcept C127313418 @default.
- W2085103921 hasConcept C132651083 @default.
- W2085103921 hasConcept C151730666 @default.
- W2085103921 hasConcept C16989226 @default.
- W2085103921 hasConcept C2776169166 @default.
- W2085103921 hasConcept C3020199158 @default.
- W2085103921 hasConcept C62649853 @default.
- W2085103921 hasConceptScore W2085103921C109007969 @default.