Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085170663> ?p ?o ?g. }
- W2085170663 endingPage "5912" @default.
- W2085170663 startingPage "5905" @default.
- W2085170663 abstract "This paper proposes two methods for multi-attribute decision making problems with linguistic information, in which the preference values take the form of linguistic variables. Based on the ideal that the attribute with a larger deviation value among alternatives should be assigned a large weight, two methods named standard deviation method and mean deviation method are proposed to determine the optimal weighting vector objectively under the assumption that attribute weights are completely unknown. Two numerical examples are examined using the proposed methods to show the advantages from the other methods. It is shown that the proposed methods are straightforward and no loss of information." @default.
- W2085170663 created "2016-06-24" @default.
- W2085170663 creator A5039317458 @default.
- W2085170663 creator A5090989509 @default.
- W2085170663 date "2010-08-01" @default.
- W2085170663 modified "2023-09-23" @default.
- W2085170663 title "Standard and mean deviation methods for linguistic group decision making and their applications" @default.
- W2085170663 cites W1521108275 @default.
- W2085170663 cites W1606108510 @default.
- W2085170663 cites W194786220 @default.
- W2085170663 cites W1971403896 @default.
- W2085170663 cites W1976567794 @default.
- W2085170663 cites W1984880160 @default.
- W2085170663 cites W2011178513 @default.
- W2085170663 cites W2014845900 @default.
- W2085170663 cites W2019535522 @default.
- W2085170663 cites W2034563113 @default.
- W2085170663 cites W2036910311 @default.
- W2085170663 cites W2037612933 @default.
- W2085170663 cites W2038779958 @default.
- W2085170663 cites W2041210202 @default.
- W2085170663 cites W2042102899 @default.
- W2085170663 cites W2046290328 @default.
- W2085170663 cites W2049599335 @default.
- W2085170663 cites W2050036068 @default.
- W2085170663 cites W2060907774 @default.
- W2085170663 cites W2067103692 @default.
- W2085170663 cites W2067797486 @default.
- W2085170663 cites W2078364725 @default.
- W2085170663 cites W2086337028 @default.
- W2085170663 cites W2094772510 @default.
- W2085170663 cites W2111211679 @default.
- W2085170663 cites W2117827905 @default.
- W2085170663 cites W2119578872 @default.
- W2085170663 cites W2136821145 @default.
- W2085170663 cites W2160793668 @default.
- W2085170663 cites W2163481099 @default.
- W2085170663 cites W2168936936 @default.
- W2085170663 cites W2506768821 @default.
- W2085170663 cites W1993731375 @default.
- W2085170663 doi "https://doi.org/10.1016/j.eswa.2010.02.015" @default.
- W2085170663 hasPublicationYear "2010" @default.
- W2085170663 type Work @default.
- W2085170663 sameAs 2085170663 @default.
- W2085170663 citedByCount "80" @default.
- W2085170663 countsByYear W20851706632012 @default.
- W2085170663 countsByYear W20851706632013 @default.
- W2085170663 countsByYear W20851706632014 @default.
- W2085170663 countsByYear W20851706632015 @default.
- W2085170663 countsByYear W20851706632016 @default.
- W2085170663 countsByYear W20851706632017 @default.
- W2085170663 countsByYear W20851706632018 @default.
- W2085170663 countsByYear W20851706632019 @default.
- W2085170663 countsByYear W20851706632020 @default.
- W2085170663 countsByYear W20851706632021 @default.
- W2085170663 countsByYear W20851706632022 @default.
- W2085170663 countsByYear W20851706632023 @default.
- W2085170663 crossrefType "journal-article" @default.
- W2085170663 hasAuthorship W2085170663A5039317458 @default.
- W2085170663 hasAuthorship W2085170663A5090989509 @default.
- W2085170663 hasConcept C105795698 @default.
- W2085170663 hasConcept C111472728 @default.
- W2085170663 hasConcept C124101348 @default.
- W2085170663 hasConcept C126838900 @default.
- W2085170663 hasConcept C138885662 @default.
- W2085170663 hasConcept C154945302 @default.
- W2085170663 hasConcept C17744445 @default.
- W2085170663 hasConcept C183115368 @default.
- W2085170663 hasConcept C199539241 @default.
- W2085170663 hasConcept C20701700 @default.
- W2085170663 hasConcept C22679943 @default.
- W2085170663 hasConcept C2776291640 @default.
- W2085170663 hasConcept C2776639384 @default.
- W2085170663 hasConcept C2781249084 @default.
- W2085170663 hasConcept C33923547 @default.
- W2085170663 hasConcept C41008148 @default.
- W2085170663 hasConcept C71924100 @default.
- W2085170663 hasConcept C9490382 @default.
- W2085170663 hasConceptScore W2085170663C105795698 @default.
- W2085170663 hasConceptScore W2085170663C111472728 @default.
- W2085170663 hasConceptScore W2085170663C124101348 @default.
- W2085170663 hasConceptScore W2085170663C126838900 @default.
- W2085170663 hasConceptScore W2085170663C138885662 @default.
- W2085170663 hasConceptScore W2085170663C154945302 @default.
- W2085170663 hasConceptScore W2085170663C17744445 @default.
- W2085170663 hasConceptScore W2085170663C183115368 @default.
- W2085170663 hasConceptScore W2085170663C199539241 @default.
- W2085170663 hasConceptScore W2085170663C20701700 @default.
- W2085170663 hasConceptScore W2085170663C22679943 @default.
- W2085170663 hasConceptScore W2085170663C2776291640 @default.
- W2085170663 hasConceptScore W2085170663C2776639384 @default.
- W2085170663 hasConceptScore W2085170663C2781249084 @default.
- W2085170663 hasConceptScore W2085170663C33923547 @default.
- W2085170663 hasConceptScore W2085170663C41008148 @default.
- W2085170663 hasConceptScore W2085170663C71924100 @default.
- W2085170663 hasConceptScore W2085170663C9490382 @default.
- W2085170663 hasIssue "8" @default.
- W2085170663 hasLocation W20851706631 @default.