Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085170948> ?p ?o ?g. }
- W2085170948 endingPage "257" @default.
- W2085170948 startingPage "245" @default.
- W2085170948 abstract "This paper analyzes the spatial patterns of surface soil moisture of alpine meadows and pastures in the Matsch/Mazia Valley in the Italian Alps by comparing estimations from three different sources of information: (I) RADARSAT 2 synthetic aperture radar (SAR) images; (II) simulations by using the GEOtop hydrological model and (III) ground observations, derived from a network of fixed stations and field campaigns with mobile devices. The aim of this paper is to assess the added value of RADARSAT 2 products with respect to a distributed hydrological model in capturing soil moisture patterns in mountain areas, which is a challenging environment with a high degree of spatial variability. Moreover, the physical controls of the observed soil moisture patterns are analyzed by using the hydrological model. Results show that the model, once calibrated for soil and vegetation parameters, predicts the plot-scale temporal dynamic in station locations and the spatial averages with sufficient accuracy. However, the model output shows lower spatial variability with respect to the ground surveys, with a limited capability of reproducing moist areas in irrigated meadows. Differences arise due to difficulties in knowing soil model parameters and irrigation amounts with accurate spatial detail. RADARSAT 2 soil moisture maps well reproduce the spatial ground surveys, as well as over-irrigated meadows. However, SAR products are limited to slopes with a favorable viewing angle, to bare soil or to grassland areas. Moreover, the signal penetration depth is restricted to the soil surface layer. The major control on RADARSAT 2 patterns is land use. Irrigated meadows in the bottom of the valley have moister conditions, with respect to pastures along the upper hillslopes. In this case, model simulations suggest that differences in soil type could have a relevant impact on soil moisture estimation. A secondary control is topography, with increased moisture in convergent locations with a high topographic wetness index. Results suggest that the capability of RADARSAT 2 products to reproduce small-scale (20 m pixels size) surface soil moisture patterns in mountain grassland areas could complement the ability of the hydrological model to predict variations of soil moisture continuously in space and time. Therefore, RADARSAT 2 products can give useful information to improve spatial parameterization and validation of distributed hydrological models in mountain grassland areas, also in the perspective of implementing data integration procedures for operational soil moisture monitoring." @default.
- W2085170948 created "2016-06-24" @default.
- W2085170948 creator A5014002590 @default.
- W2085170948 creator A5024062552 @default.
- W2085170948 creator A5032617590 @default.
- W2085170948 creator A5035315833 @default.
- W2085170948 creator A5044557015 @default.
- W2085170948 creator A5065337836 @default.
- W2085170948 date "2014-08-01" @default.
- W2085170948 modified "2023-10-02" @default.
- W2085170948 title "Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images andhydrological modeling" @default.
- W2085170948 cites W129484703 @default.
- W2085170948 cites W1802734833 @default.
- W2085170948 cites W1965626442 @default.
- W2085170948 cites W1970390440 @default.
- W2085170948 cites W1973529527 @default.
- W2085170948 cites W1980557921 @default.
- W2085170948 cites W1980965960 @default.
- W2085170948 cites W1981646498 @default.
- W2085170948 cites W1989699041 @default.
- W2085170948 cites W1992809911 @default.
- W2085170948 cites W1998533031 @default.
- W2085170948 cites W2005107454 @default.
- W2085170948 cites W2011659320 @default.
- W2085170948 cites W2029587925 @default.
- W2085170948 cites W2033159142 @default.
- W2085170948 cites W2037308434 @default.
- W2085170948 cites W2038476006 @default.
- W2085170948 cites W2039507572 @default.
- W2085170948 cites W2044927495 @default.
- W2085170948 cites W2046219723 @default.
- W2085170948 cites W2048607940 @default.
- W2085170948 cites W2050310403 @default.
- W2085170948 cites W2051899086 @default.
- W2085170948 cites W2053695887 @default.
- W2085170948 cites W2054303415 @default.
- W2085170948 cites W2066275115 @default.
- W2085170948 cites W2069756757 @default.
- W2085170948 cites W2071839294 @default.
- W2085170948 cites W2073870779 @default.
- W2085170948 cites W2080363681 @default.
- W2085170948 cites W2084117724 @default.
- W2085170948 cites W2091723666 @default.
- W2085170948 cites W2100383589 @default.
- W2085170948 cites W2103255855 @default.
- W2085170948 cites W2105748500 @default.
- W2085170948 cites W2112077299 @default.
- W2085170948 cites W2115408897 @default.
- W2085170948 cites W2126179256 @default.
- W2085170948 cites W2127103322 @default.
- W2085170948 cites W2130098273 @default.
- W2085170948 cites W2130746770 @default.
- W2085170948 cites W2136473800 @default.
- W2085170948 cites W2143296882 @default.
- W2085170948 cites W2144369458 @default.
- W2085170948 cites W2145697390 @default.
- W2085170948 cites W2148966523 @default.
- W2085170948 cites W2149895722 @default.
- W2085170948 cites W2153427373 @default.
- W2085170948 cites W2157992333 @default.
- W2085170948 cites W2158174882 @default.
- W2085170948 cites W2159858559 @default.
- W2085170948 cites W2162604832 @default.
- W2085170948 cites W2162906470 @default.
- W2085170948 cites W4231579777 @default.
- W2085170948 doi "https://doi.org/10.1016/j.jhydrol.2014.02.018" @default.
- W2085170948 hasPublicationYear "2014" @default.
- W2085170948 type Work @default.
- W2085170948 sameAs 2085170948 @default.
- W2085170948 citedByCount "67" @default.
- W2085170948 countsByYear W20851709482014 @default.
- W2085170948 countsByYear W20851709482015 @default.
- W2085170948 countsByYear W20851709482016 @default.
- W2085170948 countsByYear W20851709482017 @default.
- W2085170948 countsByYear W20851709482018 @default.
- W2085170948 countsByYear W20851709482019 @default.
- W2085170948 countsByYear W20851709482020 @default.
- W2085170948 countsByYear W20851709482021 @default.
- W2085170948 countsByYear W20851709482022 @default.
- W2085170948 countsByYear W20851709482023 @default.
- W2085170948 crossrefType "journal-article" @default.
- W2085170948 hasAuthorship W2085170948A5014002590 @default.
- W2085170948 hasAuthorship W2085170948A5024062552 @default.
- W2085170948 hasAuthorship W2085170948A5032617590 @default.
- W2085170948 hasAuthorship W2085170948A5035315833 @default.
- W2085170948 hasAuthorship W2085170948A5044557015 @default.
- W2085170948 hasAuthorship W2085170948A5065337836 @default.
- W2085170948 hasConcept C105795698 @default.
- W2085170948 hasConcept C127313418 @default.
- W2085170948 hasConcept C142724271 @default.
- W2085170948 hasConcept C158709400 @default.
- W2085170948 hasConcept C159390177 @default.
- W2085170948 hasConcept C187320778 @default.
- W2085170948 hasConcept C18903297 @default.
- W2085170948 hasConcept C205649164 @default.
- W2085170948 hasConcept C24939127 @default.
- W2085170948 hasConcept C2775835988 @default.
- W2085170948 hasConcept C2776133958 @default.