Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085180478> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2085180478 abstract "A major challenge in computer-aided diagnostic (CAD) schemes for nodule detection on chest radiographs is the detection of nodules that overlap with ribs. Our purpose was to develop a technique for false-positive reduction in a CAD scheme using a rib-suppression technique based on massive training artificial neural networks (MTANNs). We developed a multiple MTANN (multi-MTANN) consisting of eight MTANNs for removing eight types of false positives. For further removal of false positives caused by ribs, we developed a rib-suppression technique using a multi-resolution MTANN consisting of three different resolution MTANNs. To suppress the contrast of ribs, the multi-resolution MTANN was trained with input chest radiographs and the teaching soft-tissue images obtained by using a dual-energy subtraction technique. Our database consisted of 91 nodules in 91 chest radiographs. With our original CAD scheme based on a difference image technique with linear discriminant analysis, a sensitivity of 82.4% (75/91 nodules) with 4.5 (410/91) false positives per image was achieved. The trained multi-MTANN was able to remove 62.7% (257/410) of false positives with a loss of one true positive. With the rib-suppression technique, the contrast of ribs in chest radiographs was suppressed substantially. Due to the effect of rib-suppression, 41.2% (63/153) of the remaining false positives were removed without a loss of any true positives. Thus, the false-positive rate of our CAD scheme was improved substantially, while a high sensitivity was maintained." @default.
- W2085180478 created "2016-06-24" @default.
- W2085180478 creator A5024687283 @default.
- W2085180478 creator A5025334715 @default.
- W2085180478 creator A5027216693 @default.
- W2085180478 creator A5050949810 @default.
- W2085180478 creator A5081844561 @default.
- W2085180478 creator A5082886918 @default.
- W2085180478 date "2005-04-29" @default.
- W2085180478 modified "2023-10-17" @default.
- W2085180478 title "Effect of massive training artificial neural networks for rib suppression on reduction of false positives in computerized detection of nodules on chest radiographs" @default.
- W2085180478 doi "https://doi.org/10.1117/12.594730" @default.
- W2085180478 hasPublicationYear "2005" @default.
- W2085180478 type Work @default.
- W2085180478 sameAs 2085180478 @default.
- W2085180478 citedByCount "2" @default.
- W2085180478 countsByYear W20851804782016 @default.
- W2085180478 crossrefType "proceedings-article" @default.
- W2085180478 hasAuthorship W2085180478A5024687283 @default.
- W2085180478 hasAuthorship W2085180478A5025334715 @default.
- W2085180478 hasAuthorship W2085180478A5027216693 @default.
- W2085180478 hasAuthorship W2085180478A5050949810 @default.
- W2085180478 hasAuthorship W2085180478A5081844561 @default.
- W2085180478 hasAuthorship W2085180478A5082886918 @default.
- W2085180478 hasConcept C105702510 @default.
- W2085180478 hasConcept C111335779 @default.
- W2085180478 hasConcept C126838900 @default.
- W2085180478 hasConcept C153180895 @default.
- W2085180478 hasConcept C154945302 @default.
- W2085180478 hasConcept C160306043 @default.
- W2085180478 hasConcept C194789388 @default.
- W2085180478 hasConcept C2524010 @default.
- W2085180478 hasConcept C2779549770 @default.
- W2085180478 hasConcept C2781305912 @default.
- W2085180478 hasConcept C2989005 @default.
- W2085180478 hasConcept C2989486834 @default.
- W2085180478 hasConcept C33923547 @default.
- W2085180478 hasConcept C36454342 @default.
- W2085180478 hasConcept C41008148 @default.
- W2085180478 hasConcept C55493867 @default.
- W2085180478 hasConcept C64869954 @default.
- W2085180478 hasConcept C68060419 @default.
- W2085180478 hasConcept C69738355 @default.
- W2085180478 hasConcept C71924100 @default.
- W2085180478 hasConcept C86803240 @default.
- W2085180478 hasConcept C94375191 @default.
- W2085180478 hasConceptScore W2085180478C105702510 @default.
- W2085180478 hasConceptScore W2085180478C111335779 @default.
- W2085180478 hasConceptScore W2085180478C126838900 @default.
- W2085180478 hasConceptScore W2085180478C153180895 @default.
- W2085180478 hasConceptScore W2085180478C154945302 @default.
- W2085180478 hasConceptScore W2085180478C160306043 @default.
- W2085180478 hasConceptScore W2085180478C194789388 @default.
- W2085180478 hasConceptScore W2085180478C2524010 @default.
- W2085180478 hasConceptScore W2085180478C2779549770 @default.
- W2085180478 hasConceptScore W2085180478C2781305912 @default.
- W2085180478 hasConceptScore W2085180478C2989005 @default.
- W2085180478 hasConceptScore W2085180478C2989486834 @default.
- W2085180478 hasConceptScore W2085180478C33923547 @default.
- W2085180478 hasConceptScore W2085180478C36454342 @default.
- W2085180478 hasConceptScore W2085180478C41008148 @default.
- W2085180478 hasConceptScore W2085180478C55493867 @default.
- W2085180478 hasConceptScore W2085180478C64869954 @default.
- W2085180478 hasConceptScore W2085180478C68060419 @default.
- W2085180478 hasConceptScore W2085180478C69738355 @default.
- W2085180478 hasConceptScore W2085180478C71924100 @default.
- W2085180478 hasConceptScore W2085180478C86803240 @default.
- W2085180478 hasConceptScore W2085180478C94375191 @default.
- W2085180478 hasLocation W20851804781 @default.
- W2085180478 hasOpenAccess W2085180478 @default.
- W2085180478 hasPrimaryLocation W20851804781 @default.
- W2085180478 hasRelatedWork W109571580 @default.
- W2085180478 hasRelatedWork W1983023614 @default.
- W2085180478 hasRelatedWork W2055516733 @default.
- W2085180478 hasRelatedWork W2073930176 @default.
- W2085180478 hasRelatedWork W2080308676 @default.
- W2085180478 hasRelatedWork W2085180478 @default.
- W2085180478 hasRelatedWork W2358567931 @default.
- W2085180478 hasRelatedWork W2359151871 @default.
- W2085180478 hasRelatedWork W2440778119 @default.
- W2085180478 hasRelatedWork W3213726327 @default.
- W2085180478 isParatext "false" @default.
- W2085180478 isRetracted "false" @default.
- W2085180478 magId "2085180478" @default.
- W2085180478 workType "article" @default.