Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085183103> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2085183103 endingPage "191" @default.
- W2085183103 startingPage "151" @default.
- W2085183103 abstract "Let E be a Polish space equipped with a probability measure μ on its Borel σ-field B, and π a non-quasi-nilpotent positive operator on Lp(E,B,μ) with 1<p<∞. Using two notions, tail norm condition (TNC for short) and uniformly positive improving property (UPI/μ for short) for the resolvent of π, we prove a characterization for the existence of spectral gap of π, i.e., the spectral radius rsp(π) of π being an isolated point in the spectrum σ(π) of π. This characterization is a generalization of M. Hino's result for exponential convergence of πn, where the assumption of existence of the ground state, i.e., of a nonnegative eigenfunction of π for eigenvalue rsp(π), in M. Hino's result, is removed. Indeed, under TNC only, we prove the existence of ground state of π. Furthermore, under the TNC, we also establish the finiteness of dimension of eigenspace of π for eigenvalue rsp(π) and a interesting finite triangularization of π, which generalizes L. Gross' famous result by removing his assumption of symmetry and weakening his assumption of hyperboundedness. Finally, we give several applications of the characterization for spectral gap to Schrödinger operators, some invariance principles of Markov processes, and Girsanov semigroups respectively. In particular, we present a sharp condition to guarantee the existence of spectral gap for Girsanov semigroups. Soient E un espace polonais, μ une mesure de probabilité sur sa tribu borelienne, et π un opérateur positif non-nilpotent sur Lp(E,μ) où 1<p<∞. En utilisant deux notions : condition de norme de queue (CNQ) et propriété de positivité améliorante uniforme pour la résolvante de π, nous établissons une caractérisation de l'existence du trou spectral de π, i.e., le rayon spectral rsp(π) est isolé dans le spectre de π. Cette caractérisation généralise un résultat antérieur de M. Hino sur la convergence exponentielle de πn, dont l'hypothèse d'existence de l'état fondamental est supprimée. De plus, sous la CNQ, nous démontrons que l'espace propre de π associé à rsp(π) est non-trivial et de dimension finie, ce qui améliore un résultat bien connu de L. Gross (1972) dans L2(E,μ), pour lequel la symétrie et l'hyper-bornitude de π etaient supposées. Finalement nous donnons quelques applications de cette caractérisation du trou spectral aux opérateurs de Schrödinger, aux principes d'invariance (faible ou forte) pour des processus de Markov et aux semigroupes de Girsanov, etc. En particulier nous obtenons une condition fine suffisante pour l'existence de trou spectral de semigroupes de Girsanov." @default.
- W2085183103 created "2016-06-24" @default.
- W2085183103 creator A5062134131 @default.
- W2085183103 creator A5078509204 @default.
- W2085183103 date "2006-02-01" @default.
- W2085183103 modified "2023-10-03" @default.
- W2085183103 title "Spectral gap of positive operators and applications" @default.
- W2085183103 cites W1970248704 @default.
- W2085183103 cites W1975713661 @default.
- W2085183103 cites W1986052906 @default.
- W2085183103 cites W1990675324 @default.
- W2085183103 cites W2001573329 @default.
- W2085183103 cites W2004802993 @default.
- W2085183103 cites W2006881398 @default.
- W2085183103 cites W2032392638 @default.
- W2085183103 cites W2035570580 @default.
- W2085183103 cites W2062422443 @default.
- W2085183103 cites W2068309122 @default.
- W2085183103 cites W2070008418 @default.
- W2085183103 cites W2084148084 @default.
- W2085183103 cites W2088811292 @default.
- W2085183103 cites W2327680971 @default.
- W2085183103 doi "https://doi.org/10.1016/j.matpur.2004.11.004" @default.
- W2085183103 hasPublicationYear "2006" @default.
- W2085183103 type Work @default.
- W2085183103 sameAs 2085183103 @default.
- W2085183103 citedByCount "23" @default.
- W2085183103 countsByYear W20851831032013 @default.
- W2085183103 countsByYear W20851831032014 @default.
- W2085183103 countsByYear W20851831032015 @default.
- W2085183103 countsByYear W20851831032017 @default.
- W2085183103 countsByYear W20851831032018 @default.
- W2085183103 countsByYear W20851831032020 @default.
- W2085183103 countsByYear W20851831032021 @default.
- W2085183103 countsByYear W20851831032023 @default.
- W2085183103 crossrefType "journal-article" @default.
- W2085183103 hasAuthorship W2085183103A5062134131 @default.
- W2085183103 hasAuthorship W2085183103A5078509204 @default.
- W2085183103 hasBestOaLocation W20851831031 @default.
- W2085183103 hasConcept C104824951 @default.
- W2085183103 hasConcept C118615104 @default.
- W2085183103 hasConcept C121332964 @default.
- W2085183103 hasConcept C134306372 @default.
- W2085183103 hasConcept C140532419 @default.
- W2085183103 hasConcept C158693339 @default.
- W2085183103 hasConcept C17744445 @default.
- W2085183103 hasConcept C191795146 @default.
- W2085183103 hasConcept C199539241 @default.
- W2085183103 hasConcept C202444582 @default.
- W2085183103 hasConcept C207405024 @default.
- W2085183103 hasConcept C2778114796 @default.
- W2085183103 hasConcept C33923547 @default.
- W2085183103 hasConcept C51955184 @default.
- W2085183103 hasConcept C62520636 @default.
- W2085183103 hasConceptScore W2085183103C104824951 @default.
- W2085183103 hasConceptScore W2085183103C118615104 @default.
- W2085183103 hasConceptScore W2085183103C121332964 @default.
- W2085183103 hasConceptScore W2085183103C134306372 @default.
- W2085183103 hasConceptScore W2085183103C140532419 @default.
- W2085183103 hasConceptScore W2085183103C158693339 @default.
- W2085183103 hasConceptScore W2085183103C17744445 @default.
- W2085183103 hasConceptScore W2085183103C191795146 @default.
- W2085183103 hasConceptScore W2085183103C199539241 @default.
- W2085183103 hasConceptScore W2085183103C202444582 @default.
- W2085183103 hasConceptScore W2085183103C207405024 @default.
- W2085183103 hasConceptScore W2085183103C2778114796 @default.
- W2085183103 hasConceptScore W2085183103C33923547 @default.
- W2085183103 hasConceptScore W2085183103C51955184 @default.
- W2085183103 hasConceptScore W2085183103C62520636 @default.
- W2085183103 hasIssue "2" @default.
- W2085183103 hasLocation W20851831031 @default.
- W2085183103 hasOpenAccess W2085183103 @default.
- W2085183103 hasPrimaryLocation W20851831031 @default.
- W2085183103 hasRelatedWork W1686790383 @default.
- W2085183103 hasRelatedWork W1982496263 @default.
- W2085183103 hasRelatedWork W2023661790 @default.
- W2085183103 hasRelatedWork W2116635890 @default.
- W2085183103 hasRelatedWork W2131625422 @default.
- W2085183103 hasRelatedWork W2300269182 @default.
- W2085183103 hasRelatedWork W2425113522 @default.
- W2085183103 hasRelatedWork W2996654955 @default.
- W2085183103 hasRelatedWork W301117870 @default.
- W2085183103 hasRelatedWork W4302556413 @default.
- W2085183103 hasVolume "85" @default.
- W2085183103 isParatext "false" @default.
- W2085183103 isRetracted "false" @default.
- W2085183103 magId "2085183103" @default.
- W2085183103 workType "article" @default.