Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085196154> ?p ?o ?g. }
- W2085196154 endingPage "91" @default.
- W2085196154 startingPage "73" @default.
- W2085196154 abstract "A study of the extracts of samples recording a transgressive–regressive succession of the Werra cyclothem, Zechstein (Upper Permian), from the southern margin of the European Permian Basin (the Fore-Sudetic Monocline, Poland) provides an insight into major sources of organic matter and diagenetic processes. The studied cross-section comprises all lithologies representative for the European basin, including transgressive sandstones (Weissliegend) and organic-rich shales (Kupferschiefer) followed by carbonates as well as regressive anhydrites with intercalations of rock salt. Due to the variable influence of overlapping diagenetic processes that affected the organic matter, i.e. maturation and late diagenetic oxidation related to base metal mineralisation, a reliable comparison of the biomarker results is only possible for the major upper part of the section (ca. 38 m, including carbonates and evaporites) but not for the oxidised first 2–3 m from the base of the Kupferschiefer. The transition from carbonate to evaporate sedimentation is associated with a shift to predominant even C-numbered n-alkanes, increased abundance of carotanes and high homohopane index reflecting enhanced reducing conditions. The presence of the C25 regular isoprenoid, squalane, biphytane and the rapid decrease in the pristane/phytane ratio in the evaporites are mainly controlled by the important contribution from both halophilic and methanogenic archaea. The occurrence of gammacerane in the anhydrites suggests development of water column stratification at some stages of the sea regression. This is associated with appearance of specific aryl isoprenoids with a lycopane carbon skeleton most likely related to Botrycoccus braunii race L algae. Lycopane derivative occurrence suggests that such an algal race could have occurred since Permian (currently known Recent-Eocene). The presence of the abundant freshwater/brackish algal biomarkers in evaporititic deposits can be envisaged in the costal part of the Zechstein basin with temporary salt wedge estuary water stratification. The algae bloomed in the top fertile fresh/brackish water layer fed by rivers, and the algal biomass was deposited on the sea floor covered with evaporitic brine. The stratification periodically broke down during precipitation of the rock salt, presumably due to a decrease in riverine water input, as revealed by characteristic disappearance of gammacerane and hopane distributions similar to those observed for the carbonate rocks. The methylphenanthrenes/phenanthrene ratio was used together with methyldibenzothiophenes/ dibenzothiophene ratio to assess maturity. These maturity estimations indicate that the peak of oil window has been reached, which is confirmed by other biomarker maturity parameters based on sterane and hopane distributions. The maturity stage of oil generation and expulsion was further confirmed by the presence of solid bitumen as cements in the sandstone underlying Kupferschiefer and bitumen veins and lenses in the carbonates." @default.
- W2085196154 created "2016-06-24" @default.
- W2085196154 creator A5021381884 @default.
- W2085196154 creator A5025647197 @default.
- W2085196154 creator A5066345028 @default.
- W2085196154 creator A5078787007 @default.
- W2085196154 date "2013-02-01" @default.
- W2085196154 modified "2023-09-25" @default.
- W2085196154 title "The Werra cyclotheme (Upper Permian, Fore-Sudetic Monocline, Poland): Insights into fluctuations of the sedimentary environment from organic geochemical studies" @default.
- W2085196154 cites W1489123546 @default.
- W2085196154 cites W19308021 @default.
- W2085196154 cites W1963798627 @default.
- W2085196154 cites W1967535300 @default.
- W2085196154 cites W1968465551 @default.
- W2085196154 cites W1970263168 @default.
- W2085196154 cites W1970377896 @default.
- W2085196154 cites W1973738344 @default.
- W2085196154 cites W1974460286 @default.
- W2085196154 cites W1974694335 @default.
- W2085196154 cites W1974916859 @default.
- W2085196154 cites W1975663577 @default.
- W2085196154 cites W1979265415 @default.
- W2085196154 cites W1980087780 @default.
- W2085196154 cites W1980594448 @default.
- W2085196154 cites W1981256607 @default.
- W2085196154 cites W1982827823 @default.
- W2085196154 cites W1983153741 @default.
- W2085196154 cites W1984564975 @default.
- W2085196154 cites W1986108572 @default.
- W2085196154 cites W1986919258 @default.
- W2085196154 cites W1988670693 @default.
- W2085196154 cites W1988989355 @default.
- W2085196154 cites W1990685094 @default.
- W2085196154 cites W1991199322 @default.
- W2085196154 cites W1993505677 @default.
- W2085196154 cites W1995575035 @default.
- W2085196154 cites W1997338331 @default.
- W2085196154 cites W1998099948 @default.
- W2085196154 cites W2004048553 @default.
- W2085196154 cites W2006936617 @default.
- W2085196154 cites W2009972245 @default.
- W2085196154 cites W2011197040 @default.
- W2085196154 cites W2013082242 @default.
- W2085196154 cites W2015120871 @default.
- W2085196154 cites W2017283248 @default.
- W2085196154 cites W2017939025 @default.
- W2085196154 cites W2021841036 @default.
- W2085196154 cites W2025466026 @default.
- W2085196154 cites W2025977109 @default.
- W2085196154 cites W2026536499 @default.
- W2085196154 cites W2026584763 @default.
- W2085196154 cites W2026601696 @default.
- W2085196154 cites W2027764199 @default.
- W2085196154 cites W2031482478 @default.
- W2085196154 cites W2035137253 @default.
- W2085196154 cites W2035653889 @default.
- W2085196154 cites W2037451857 @default.
- W2085196154 cites W2039205140 @default.
- W2085196154 cites W2039991511 @default.
- W2085196154 cites W2041641536 @default.
- W2085196154 cites W2044956892 @default.
- W2085196154 cites W2049573772 @default.
- W2085196154 cites W2053113094 @default.
- W2085196154 cites W2060084202 @default.
- W2085196154 cites W2064715629 @default.
- W2085196154 cites W2067830260 @default.
- W2085196154 cites W2070243318 @default.
- W2085196154 cites W2071184134 @default.
- W2085196154 cites W2071721539 @default.
- W2085196154 cites W2079726604 @default.
- W2085196154 cites W2083038302 @default.
- W2085196154 cites W2084080590 @default.
- W2085196154 cites W2085863778 @default.
- W2085196154 cites W2088095509 @default.
- W2085196154 cites W2089713015 @default.
- W2085196154 cites W2090122760 @default.
- W2085196154 cites W2091753308 @default.
- W2085196154 cites W2108189906 @default.
- W2085196154 cites W2109324160 @default.
- W2085196154 cites W2120420830 @default.
- W2085196154 cites W2137361665 @default.
- W2085196154 cites W2161792243 @default.
- W2085196154 cites W2335661622 @default.
- W2085196154 cites W4234228943 @default.
- W2085196154 doi "https://doi.org/10.1016/j.apgeochem.2012.09.010" @default.
- W2085196154 hasPublicationYear "2013" @default.
- W2085196154 type Work @default.
- W2085196154 sameAs 2085196154 @default.
- W2085196154 citedByCount "19" @default.
- W2085196154 countsByYear W20851961542014 @default.
- W2085196154 countsByYear W20851961542015 @default.
- W2085196154 countsByYear W20851961542016 @default.
- W2085196154 countsByYear W20851961542017 @default.
- W2085196154 countsByYear W20851961542018 @default.
- W2085196154 countsByYear W20851961542020 @default.
- W2085196154 countsByYear W20851961542021 @default.
- W2085196154 countsByYear W20851961542022 @default.
- W2085196154 countsByYear W20851961542023 @default.