Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085202338> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2085202338 abstract "Let $M$ be a complete Riemannian manifold, $Nin NN$ and $pge 1$. We prove that almost everywhere on $x=(x_1,...,x_N)in M^N$ for Lebesgue measure in $M^N$, the measure $di mu(x)=f1Nsum_{k=1}^Nd_{x_k}$ has a unique $p$-mean $e_p(x)$. As a consequence, if $X=(X_1,...,X_N)$ is a $M^N$-valued random variable with absolutely continuous law, then almost surely $mu(X(om))$ has a unique $p$-mean. In particular if $(X_n)_{nge 1}$ is an independent sample of an absolutely continuous law in $M$, then the process $e_{p,n}(om)=e_p(X_1(om),..., X_n(om))$ is well-defined. Assume $M$ is compact and consider a probability measure $nu$ in $M$. Using partial simulated annealing, we define a continuous semimartingale which converges to the set of minimizers of the integral of distance at power $p$ with respect to $nu$. When the set is a singleton, it converges to the $p$-mean." @default.
- W2085202338 created "2016-06-24" @default.
- W2085202338 creator A5070834243 @default.
- W2085202338 creator A5072585544 @default.
- W2085202338 date "2014-01-01" @default.
- W2085202338 modified "2023-10-18" @default.
- W2085202338 title "Means in complete manifolds: uniqueness and approximation" @default.
- W2085202338 cites W1545946767 @default.
- W2085202338 cites W1630927049 @default.
- W2085202338 cites W2019162816 @default.
- W2085202338 cites W2029145515 @default.
- W2085202338 cites W2037720025 @default.
- W2085202338 cites W2040125300 @default.
- W2085202338 cites W2045992064 @default.
- W2085202338 cites W2072931016 @default.
- W2085202338 cites W2073537572 @default.
- W2085202338 cites W2079630523 @default.
- W2085202338 cites W2080795841 @default.
- W2085202338 cites W2125391899 @default.
- W2085202338 cites W2963881767 @default.
- W2085202338 cites W3099598052 @default.
- W2085202338 cites W3103171021 @default.
- W2085202338 hasPublicationYear "2014" @default.
- W2085202338 type Work @default.
- W2085202338 sameAs 2085202338 @default.
- W2085202338 citedByCount "1" @default.
- W2085202338 countsByYear W20852023382014 @default.
- W2085202338 crossrefType "journal-article" @default.
- W2085202338 hasAuthorship W2085202338A5070834243 @default.
- W2085202338 hasAuthorship W2085202338A5072585544 @default.
- W2085202338 hasBestOaLocation W20852023381 @default.
- W2085202338 hasConcept C134306372 @default.
- W2085202338 hasConcept C202444582 @default.
- W2085202338 hasConcept C2777021972 @default.
- W2085202338 hasConcept C28826006 @default.
- W2085202338 hasConcept C33923547 @default.
- W2085202338 hasConceptScore W2085202338C134306372 @default.
- W2085202338 hasConceptScore W2085202338C202444582 @default.
- W2085202338 hasConceptScore W2085202338C2777021972 @default.
- W2085202338 hasConceptScore W2085202338C28826006 @default.
- W2085202338 hasConceptScore W2085202338C33923547 @default.
- W2085202338 hasLocation W20852023381 @default.
- W2085202338 hasLocation W20852023382 @default.
- W2085202338 hasLocation W20852023383 @default.
- W2085202338 hasLocation W20852023384 @default.
- W2085202338 hasLocation W20852023385 @default.
- W2085202338 hasLocation W20852023386 @default.
- W2085202338 hasLocation W20852023387 @default.
- W2085202338 hasOpenAccess W2085202338 @default.
- W2085202338 hasPrimaryLocation W20852023381 @default.
- W2085202338 hasRelatedWork W1993453399 @default.
- W2085202338 hasRelatedWork W2014702954 @default.
- W2085202338 hasRelatedWork W2044115466 @default.
- W2085202338 hasRelatedWork W2044249373 @default.
- W2085202338 hasRelatedWork W2045956890 @default.
- W2085202338 hasRelatedWork W2098586728 @default.
- W2085202338 hasRelatedWork W2320758659 @default.
- W2085202338 hasRelatedWork W2350012146 @default.
- W2085202338 hasRelatedWork W3161443230 @default.
- W2085202338 hasRelatedWork W4226101702 @default.
- W2085202338 isParatext "false" @default.
- W2085202338 isRetracted "false" @default.
- W2085202338 magId "2085202338" @default.
- W2085202338 workType "article" @default.