Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085234101> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2085234101 endingPage "2060" @default.
- W2085234101 startingPage "2046" @default.
- W2085234101 abstract "The Galerkin method offers a powerful tool in the solution of differential equations and function approximation on the real interval [−1, 1]. By expanding the unknown function in appropriately chosen global basis functions, each of which explicitly satisfies the given boundary conditions, in general this scheme converges exponentially fast and almost always supplies the most terse representation of a smooth solution. To date, typical schemes have been defined in terms of a linear combination of two Jacobi polynomials. However, the resulting functions do not inherit the expedient properties of the Jacobi polynomials themselves and the basis set will not only be non-orthogonal but may, in fact, be poorly conditioned. Using a Gram-Schmidt procedure, it is possible to construct, in an incremental fashion, polynomial basis sets that not only satisfy any linear homogeneous boundary conditions but are also orthogonal with respect to the general weighting function (1-x)α(1+x)β. However, as it stands, this method is not only cumbersome but does not provide the structure for general index n of the functions and obscures their dependence on the parameters (α,β). In this paper, it is shown that each of these Galerkin basis functions, as calculated by the Gram-Schmidt procedure, may be written as a linear combination of a small number of Jacobi polynomials with coefficients that can be determined. Moreover, this terse analytic representation reveals that, for large index, the basis functions behave asymptotically like the single Jacobi polynomial Pn(α,β)(x). This new result shows that such Galerkin bases not only retain exponential convergence but expedient function-fitting properties too, in much the same way as the Jacobi polynomials themselves. This powerful methodology of constructing Galerkin basis sets is illustrated by many examples, and it is shown how the results extend to polar geometries. In exploring more generalised definitions of orthogonality involving derivatives, we discuss how a large class of differential operators may be discretised by Galerkin schemes and represented in a sparse fashion by the inverse of band-limited matrices." @default.
- W2085234101 created "2016-06-24" @default.
- W2085234101 creator A5035390538 @default.
- W2085234101 date "2010-03-01" @default.
- W2085234101 modified "2023-09-23" @default.
- W2085234101 title "Galerkin orthogonal polynomials" @default.
- W2085234101 cites W1572814814 @default.
- W2085234101 cites W2007599853 @default.
- W2085234101 cites W2029055820 @default.
- W2085234101 cites W2035532227 @default.
- W2085234101 cites W2052989920 @default.
- W2085234101 cites W2071555048 @default.
- W2085234101 cites W2072929059 @default.
- W2085234101 cites W2076253526 @default.
- W2085234101 cites W2128334635 @default.
- W2085234101 cites W2154866881 @default.
- W2085234101 cites W2410898212 @default.
- W2085234101 doi "https://doi.org/10.1016/j.jcp.2009.11.022" @default.
- W2085234101 hasPublicationYear "2010" @default.
- W2085234101 type Work @default.
- W2085234101 sameAs 2085234101 @default.
- W2085234101 citedByCount "29" @default.
- W2085234101 countsByYear W20852341012012 @default.
- W2085234101 countsByYear W20852341012013 @default.
- W2085234101 countsByYear W20852341012014 @default.
- W2085234101 countsByYear W20852341012015 @default.
- W2085234101 countsByYear W20852341012016 @default.
- W2085234101 countsByYear W20852341012018 @default.
- W2085234101 countsByYear W20852341012019 @default.
- W2085234101 countsByYear W20852341012020 @default.
- W2085234101 countsByYear W20852341012021 @default.
- W2085234101 crossrefType "journal-article" @default.
- W2085234101 hasAuthorship W2085234101A5035390538 @default.
- W2085234101 hasConcept C10628310 @default.
- W2085234101 hasConcept C121332964 @default.
- W2085234101 hasConcept C12426560 @default.
- W2085234101 hasConcept C126838900 @default.
- W2085234101 hasConcept C134306372 @default.
- W2085234101 hasConcept C135628077 @default.
- W2085234101 hasConcept C14036430 @default.
- W2085234101 hasConcept C182310444 @default.
- W2085234101 hasConcept C183115368 @default.
- W2085234101 hasConcept C186899397 @default.
- W2085234101 hasConcept C187064257 @default.
- W2085234101 hasConcept C2524010 @default.
- W2085234101 hasConcept C2778406171 @default.
- W2085234101 hasConcept C28826006 @default.
- W2085234101 hasConcept C33923547 @default.
- W2085234101 hasConcept C48490523 @default.
- W2085234101 hasConcept C5917680 @default.
- W2085234101 hasConcept C62520636 @default.
- W2085234101 hasConcept C71924100 @default.
- W2085234101 hasConcept C78458016 @default.
- W2085234101 hasConcept C86803240 @default.
- W2085234101 hasConcept C90119067 @default.
- W2085234101 hasConcept C97355855 @default.
- W2085234101 hasConceptScore W2085234101C10628310 @default.
- W2085234101 hasConceptScore W2085234101C121332964 @default.
- W2085234101 hasConceptScore W2085234101C12426560 @default.
- W2085234101 hasConceptScore W2085234101C126838900 @default.
- W2085234101 hasConceptScore W2085234101C134306372 @default.
- W2085234101 hasConceptScore W2085234101C135628077 @default.
- W2085234101 hasConceptScore W2085234101C14036430 @default.
- W2085234101 hasConceptScore W2085234101C182310444 @default.
- W2085234101 hasConceptScore W2085234101C183115368 @default.
- W2085234101 hasConceptScore W2085234101C186899397 @default.
- W2085234101 hasConceptScore W2085234101C187064257 @default.
- W2085234101 hasConceptScore W2085234101C2524010 @default.
- W2085234101 hasConceptScore W2085234101C2778406171 @default.
- W2085234101 hasConceptScore W2085234101C28826006 @default.
- W2085234101 hasConceptScore W2085234101C33923547 @default.
- W2085234101 hasConceptScore W2085234101C48490523 @default.
- W2085234101 hasConceptScore W2085234101C5917680 @default.
- W2085234101 hasConceptScore W2085234101C62520636 @default.
- W2085234101 hasConceptScore W2085234101C71924100 @default.
- W2085234101 hasConceptScore W2085234101C78458016 @default.
- W2085234101 hasConceptScore W2085234101C86803240 @default.
- W2085234101 hasConceptScore W2085234101C90119067 @default.
- W2085234101 hasConceptScore W2085234101C97355855 @default.
- W2085234101 hasIssue "6" @default.
- W2085234101 hasLocation W20852341011 @default.
- W2085234101 hasOpenAccess W2085234101 @default.
- W2085234101 hasPrimaryLocation W20852341011 @default.
- W2085234101 hasRelatedWork W155358592 @default.
- W2085234101 hasRelatedWork W2147653819 @default.
- W2085234101 hasRelatedWork W2187366151 @default.
- W2085234101 hasRelatedWork W2376417258 @default.
- W2085234101 hasRelatedWork W2376508734 @default.
- W2085234101 hasRelatedWork W2403454522 @default.
- W2085234101 hasRelatedWork W2439864307 @default.
- W2085234101 hasRelatedWork W3006303722 @default.
- W2085234101 hasRelatedWork W4297749837 @default.
- W2085234101 hasRelatedWork W4308731491 @default.
- W2085234101 hasVolume "229" @default.
- W2085234101 isParatext "false" @default.
- W2085234101 isRetracted "false" @default.
- W2085234101 magId "2085234101" @default.
- W2085234101 workType "article" @default.