Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085245147> ?p ?o ?g. }
- W2085245147 endingPage "5893" @default.
- W2085245147 startingPage "5875" @default.
- W2085245147 abstract "Abstract Historically, the following three approaches to synthesize materials with new atomic structures and, thus, new properties may be distinguished. In the first period – beginning with the discovery of metals about 5000 years ago – the atomic structure of crystalline metallic materials was modified by introducing crystal defects, e.g. by hammering or rolling. However, even at the maximum defect density achievable by this approach (about 10 12 dislocations per cm 2 ) only about 1% of the atoms are located in the cores of the crystal defects where the atomic structure deviates significantly from the one in the perfect crystal lattice. In other words, this approach does not permit the generation of crystalline materials, the atomic arrangements of which deviate significantly (i.e. in a large volume fraction of the material) from the atomic arrangement in perfect crystals with the same chemical composition. Many crystalline materials used commercially today are based on this approach. In the second approach, the way to a class of materials with new atomic structures was opened about 35 years ago by having up to 50% of the atoms located in cores of grain boundaries and/or interphase boundaries. Materials of this kind were obtained by reducing the crystal size of polycrystals to a few nanometers. These materials were called nanocrystalline or nanostructured materials. As the atomic arrangements in the cores of grain and/or interphase boundaries differ from the ones in perfect crystals, this approach led to materials with new properties (in comparison to the chemically identical single crystals). In the most recent, third approach, a new class of materials with a glassy structure is synthesized. Their novel feature is that the atomic structure throughout the entire volume of the material as well as the density of the entire material can be tuned. Materials of this kind are called nanoglasses. They are generated by introducing interfaces into metallic glasses on a nanometer scale. These interfaces delocalize upon annealing, so that the free volume associated with the interfaces spreads throughout the volume of the glass. This delocalization changes the atomic structure and density of the glass throughout the volume. In fact, by controlling the spacing between the interfaces introduced into the glass as well as their degree of delocalization (by modifying the annealing time and/or annealing temperature), the atomic structures as well as the density (and hence all structure/density-dependent properties) of nanoglasses may be controlled. A reduction of the density by up to 15% seems to be possible. A comparable tuning of the atomic structure/density of crystalline materials is not conceivable because defects in crystals (grain boundaries, dislocations, etc.) do not delocalize upon annealing." @default.
- W2085245147 created "2016-06-24" @default.
- W2085245147 creator A5024979529 @default.
- W2085245147 date "2008-11-01" @default.
- W2085245147 modified "2023-09-30" @default.
- W2085245147 title "Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today?" @default.
- W2085245147 cites W1626630498 @default.
- W2085245147 cites W1966130133 @default.
- W2085245147 cites W1975797336 @default.
- W2085245147 cites W1979803714 @default.
- W2085245147 cites W1980079121 @default.
- W2085245147 cites W1982016691 @default.
- W2085245147 cites W1998225529 @default.
- W2085245147 cites W1998602943 @default.
- W2085245147 cites W1998946033 @default.
- W2085245147 cites W1999298454 @default.
- W2085245147 cites W2001015966 @default.
- W2085245147 cites W2003663219 @default.
- W2085245147 cites W2008035876 @default.
- W2085245147 cites W2009770013 @default.
- W2085245147 cites W2011846175 @default.
- W2085245147 cites W2015664208 @default.
- W2085245147 cites W2020339430 @default.
- W2085245147 cites W2023499447 @default.
- W2085245147 cites W2024610489 @default.
- W2085245147 cites W2025200407 @default.
- W2085245147 cites W2029709441 @default.
- W2085245147 cites W2033966930 @default.
- W2085245147 cites W2034856068 @default.
- W2085245147 cites W2035643673 @default.
- W2085245147 cites W2036931980 @default.
- W2085245147 cites W2038540600 @default.
- W2085245147 cites W2039474602 @default.
- W2085245147 cites W2043137900 @default.
- W2085245147 cites W2043339871 @default.
- W2085245147 cites W2046431058 @default.
- W2085245147 cites W2054075825 @default.
- W2085245147 cites W2054990960 @default.
- W2085245147 cites W2063340620 @default.
- W2085245147 cites W2072106511 @default.
- W2085245147 cites W2075625430 @default.
- W2085245147 cites W2077169647 @default.
- W2085245147 cites W2083277494 @default.
- W2085245147 cites W2083614331 @default.
- W2085245147 cites W2086968362 @default.
- W2085245147 cites W2087709269 @default.
- W2085245147 cites W2088502815 @default.
- W2085245147 cites W2090267883 @default.
- W2085245147 cites W2092575808 @default.
- W2085245147 cites W2113375766 @default.
- W2085245147 cites W2126535862 @default.
- W2085245147 cites W2138874647 @default.
- W2085245147 cites W2139362827 @default.
- W2085245147 cites W2738775786 @default.
- W2085245147 cites W4211145618 @default.
- W2085245147 cites W4231121023 @default.
- W2085245147 doi "https://doi.org/10.1016/j.actamat.2008.08.028" @default.
- W2085245147 hasPublicationYear "2008" @default.
- W2085245147 type Work @default.
- W2085245147 sameAs 2085245147 @default.
- W2085245147 citedByCount "150" @default.
- W2085245147 countsByYear W20852451472012 @default.
- W2085245147 countsByYear W20852451472013 @default.
- W2085245147 countsByYear W20852451472014 @default.
- W2085245147 countsByYear W20852451472015 @default.
- W2085245147 countsByYear W20852451472016 @default.
- W2085245147 countsByYear W20852451472017 @default.
- W2085245147 countsByYear W20852451472018 @default.
- W2085245147 countsByYear W20852451472019 @default.
- W2085245147 countsByYear W20852451472020 @default.
- W2085245147 countsByYear W20852451472021 @default.
- W2085245147 countsByYear W20852451472022 @default.
- W2085245147 countsByYear W20852451472023 @default.
- W2085245147 crossrefType "journal-article" @default.
- W2085245147 hasAuthorship W2085245147A5024979529 @default.
- W2085245147 hasConcept C126348684 @default.
- W2085245147 hasConcept C127413603 @default.
- W2085245147 hasConcept C171250308 @default.
- W2085245147 hasConcept C192562407 @default.
- W2085245147 hasConcept C55587333 @default.
- W2085245147 hasConceptScore W2085245147C126348684 @default.
- W2085245147 hasConceptScore W2085245147C127413603 @default.
- W2085245147 hasConceptScore W2085245147C171250308 @default.
- W2085245147 hasConceptScore W2085245147C192562407 @default.
- W2085245147 hasConceptScore W2085245147C55587333 @default.
- W2085245147 hasIssue "19" @default.
- W2085245147 hasLocation W20852451471 @default.
- W2085245147 hasOpenAccess W2085245147 @default.
- W2085245147 hasPrimaryLocation W20852451471 @default.
- W2085245147 hasRelatedWork W2160608618 @default.
- W2085245147 hasRelatedWork W2547005920 @default.
- W2085245147 hasRelatedWork W2895773523 @default.
- W2085245147 hasRelatedWork W2899084033 @default.
- W2085245147 hasRelatedWork W2899764894 @default.
- W2085245147 hasRelatedWork W3000789669 @default.
- W2085245147 hasRelatedWork W3186246859 @default.
- W2085245147 hasRelatedWork W4212879511 @default.
- W2085245147 hasRelatedWork W4224881150 @default.