Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085256503> ?p ?o ?g. }
- W2085256503 endingPage "e17845" @default.
- W2085256503 startingPage "e17845" @default.
- W2085256503 abstract "Background Several gene sets for prediction of breast cancer survival have been derived from whole-genome mRNA expression profiles. Here, we develop a statistical framework to explore whether combination of the information from such sets may improve prediction of recurrence and breast cancer specific death in early-stage breast cancers. Microarray data from two clinically similar cohorts of breast cancer patients are used as training (n = 123) and test set (n = 81), respectively. Gene sets from eleven previously published gene signatures are included in the study. Principal Findings To investigate the relationship between breast cancer survival and gene expression on a particular gene set, a Cox proportional hazards model is applied using partial likelihood regression with an L2 penalty to avoid overfitting and using cross-validation to determine the penalty weight. The fitted models are applied to an independent test set to obtain a predicted risk for each individual and each gene set. Hierarchical clustering of the test individuals on the basis of the vector of predicted risks results in two clusters with distinct clinical characteristics in terms of the distribution of molecular subtypes, ER, PR status, TP53 mutation status and histological grade category, and associated with significantly different survival probabilities (recurrence: p = 0.005; breast cancer death: p = 0.014). Finally, principal components analysis of the gene signatures is used to derive combined predictors used to fit a new Cox model. This model classifies test individuals into two risk groups with distinct survival characteristics (recurrence: p = 0.003; breast cancer death: p = 0.001). The latter classifier outperforms all the individual gene signatures, as well as Cox models based on traditional clinical parameters and the Adjuvant! Online for survival prediction. Conclusion Combining the predictive strength of multiple gene signatures improves prediction of breast cancer survival. The presented methodology is broadly applicable to breast cancer risk assessment using any new identified gene set." @default.
- W2085256503 created "2016-06-24" @default.
- W2085256503 creator A5001565523 @default.
- W2085256503 creator A5001621913 @default.
- W2085256503 creator A5007823953 @default.
- W2085256503 creator A5025750693 @default.
- W2085256503 creator A5038405578 @default.
- W2085256503 creator A5052676245 @default.
- W2085256503 creator A5064417417 @default.
- W2085256503 creator A5065073451 @default.
- W2085256503 creator A5088763169 @default.
- W2085256503 date "2011-03-10" @default.
- W2085256503 modified "2023-09-30" @default.
- W2085256503 title "Combining Gene Signatures Improves Prediction of Breast Cancer Survival" @default.
- W2085256503 cites W1546709038 @default.
- W2085256503 cites W1930298597 @default.
- W2085256503 cites W2012339972 @default.
- W2085256503 cites W2014501359 @default.
- W2085256503 cites W2031821463 @default.
- W2085256503 cites W2057487057 @default.
- W2085256503 cites W2061961900 @default.
- W2085256503 cites W2071143412 @default.
- W2085256503 cites W2074465378 @default.
- W2085256503 cites W2082833890 @default.
- W2085256503 cites W2093909277 @default.
- W2085256503 cites W2096863518 @default.
- W2085256503 cites W2105882193 @default.
- W2085256503 cites W2118413367 @default.
- W2085256503 cites W2119480061 @default.
- W2085256503 cites W2128957040 @default.
- W2085256503 cites W2128985829 @default.
- W2085256503 cites W2129925362 @default.
- W2085256503 cites W2131994307 @default.
- W2085256503 cites W2142635246 @default.
- W2085256503 cites W2148773517 @default.
- W2085256503 cites W2154453972 @default.
- W2085256503 cites W2157446225 @default.
- W2085256503 cites W2157840751 @default.
- W2085256503 cites W2160450758 @default.
- W2085256503 cites W2165776880 @default.
- W2085256503 cites W2170140374 @default.
- W2085256503 cites W2171351216 @default.
- W2085256503 cites W4245024447 @default.
- W2085256503 doi "https://doi.org/10.1371/journal.pone.0017845" @default.
- W2085256503 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3053398" @default.
- W2085256503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21423775" @default.
- W2085256503 hasPublicationYear "2011" @default.
- W2085256503 type Work @default.
- W2085256503 sameAs 2085256503 @default.
- W2085256503 citedByCount "35" @default.
- W2085256503 countsByYear W20852565032012 @default.
- W2085256503 countsByYear W20852565032013 @default.
- W2085256503 countsByYear W20852565032014 @default.
- W2085256503 countsByYear W20852565032015 @default.
- W2085256503 countsByYear W20852565032016 @default.
- W2085256503 countsByYear W20852565032017 @default.
- W2085256503 countsByYear W20852565032018 @default.
- W2085256503 countsByYear W20852565032020 @default.
- W2085256503 countsByYear W20852565032022 @default.
- W2085256503 countsByYear W20852565032023 @default.
- W2085256503 crossrefType "journal-article" @default.
- W2085256503 hasAuthorship W2085256503A5001565523 @default.
- W2085256503 hasAuthorship W2085256503A5001621913 @default.
- W2085256503 hasAuthorship W2085256503A5007823953 @default.
- W2085256503 hasAuthorship W2085256503A5025750693 @default.
- W2085256503 hasAuthorship W2085256503A5038405578 @default.
- W2085256503 hasAuthorship W2085256503A5052676245 @default.
- W2085256503 hasAuthorship W2085256503A5064417417 @default.
- W2085256503 hasAuthorship W2085256503A5065073451 @default.
- W2085256503 hasAuthorship W2085256503A5088763169 @default.
- W2085256503 hasBestOaLocation W20852565031 @default.
- W2085256503 hasConcept C10515644 @default.
- W2085256503 hasConcept C121608353 @default.
- W2085256503 hasConcept C126322002 @default.
- W2085256503 hasConcept C143998085 @default.
- W2085256503 hasConcept C154945302 @default.
- W2085256503 hasConcept C22019652 @default.
- W2085256503 hasConcept C41008148 @default.
- W2085256503 hasConcept C50382708 @default.
- W2085256503 hasConcept C50644808 @default.
- W2085256503 hasConcept C530470458 @default.
- W2085256503 hasConcept C60644358 @default.
- W2085256503 hasConcept C71924100 @default.
- W2085256503 hasConcept C86803240 @default.
- W2085256503 hasConceptScore W2085256503C10515644 @default.
- W2085256503 hasConceptScore W2085256503C121608353 @default.
- W2085256503 hasConceptScore W2085256503C126322002 @default.
- W2085256503 hasConceptScore W2085256503C143998085 @default.
- W2085256503 hasConceptScore W2085256503C154945302 @default.
- W2085256503 hasConceptScore W2085256503C22019652 @default.
- W2085256503 hasConceptScore W2085256503C41008148 @default.
- W2085256503 hasConceptScore W2085256503C50382708 @default.
- W2085256503 hasConceptScore W2085256503C50644808 @default.
- W2085256503 hasConceptScore W2085256503C530470458 @default.
- W2085256503 hasConceptScore W2085256503C60644358 @default.
- W2085256503 hasConceptScore W2085256503C71924100 @default.
- W2085256503 hasConceptScore W2085256503C86803240 @default.
- W2085256503 hasIssue "3" @default.