Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085258462> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2085258462 abstract "In this lecture we present a survey on three algebraic algorithmic methods for problems in algebraic geometry: Characteristic Sets (Ritt, Wu), Grobner Bases (Buchberger), and Cylindrical Algebraic Decomposition (Collins).There are at least three reasons why algebraic methods seem to be promising for the future of geometric reasoning. First, in advanced geometric reasoning applications, the consideration of global properties of (quite complicated) non-linear objects is indispensible. These considerations, so far, were not in the scope of “traditional” computational geometry in the sense of (Preparata, Shamos 1985) or (Edelsbrunner 1987), where the emphasis is almost exclusively on combinatorial properties of linear (or very simple non-linear) objects. Second, some advanced geometric problems need the exact representation of objects as opposed to numerical approximation. For example, curve tracing in the neighborhood of singularities needs algebraic considerations that go beyond evaluation of points. Third, the automation of high-level geometric design processes, for example the conversion of parametric to implicit representations of geometric objects, needs symbolic computation involving parameters (variables, indeterminates). Algebra is the natural framework for this type of geometric computation.In fact, (real and complex) algebraic geometry, by its very nature, should be the natural mathematical setting for geometric reasoning by algebraic techniques. However, strangely enough, mainstream algebraic geometry was totally inconstructive in the last six decades and most of the constructive techniques of the nineteenth-century algebraic geometry are available only in examples rather than in terms of general algorithms. For the immediate future, however, we envisage a research impulse towards algorithmic algebraic geometry turning the fascinating insights of inconstructive algebraic geometry into algorithmic methods for geometric reasoning. We also expect that a closer contact between “traditional computational geometry”, as reflected by the ACM Computational Geometry Symposia, and computer algebra should result in exciting new techniques.The three techniques covered in this survey evolved in the past two decades. They solve problems of increasing generality and scope of applicability. Roughly, Characteristic Sets allow to detect whether or not a polynomial is in the radical of a polynomial ideal, Grobner Bases solve the canonical simplification problem for polynomial congruences, and Cylindrical Algebraic Decomposition finds a complete set of sample points for the cells of the Euclidean space in which a set of polynomials is sign-invariant.Based on these fundamental properties of the three methods, a large number of problems in real and complex algebraic geometry can be solved algorithmically, for example, decomposition and global analysis of algebraic varieties, geometrical theorem proving, solution of diophantine polynomial equations, implicitization of parametric variety representations, quantifier-free representation of sets described by formulae in the theory of real-closed fields and many others. The solvability of these problems has immediate applications for important geometric engineering problems as, for example, robot collision detection, robot path finding, inverse kinematics for dynamic systems, consistency analysis in computer-aided design, curve tracing, construction of blending surfaces and others.The practical applicability of these algebraic methods is limited by their intrinsic complexity. Much research is conducted aiming at improvements of the methods for special classes of input. Also, these methods should be seen in a preprocessing context.Roughly, the content of this lecture is identical to the survey (Buchberger, Collins, Kutzler 1988). The best survey on the method of characteristic sets is still (Wu 1984). Two surveys on Grobner Bases with details about the algorithms and the applications are (Buchberger 1985) and (Buchberger 1988). (Arnon, Collins, McCallum 1984) is a systematic presentation of Collins' method including some improvements of the method. A collection of new original papers on Collins' Cylindrical Algebraic Decomposition method and related topics is (Arnon, Buchberger 1988). This collection contains also an extensive bibliography on the field. The original papers in which the three methods were introduced are (Ritt 1950) and (Wu 1984) (Characteristic Sets), (Buchberger 1965, 1970) (Grobner Bases) and (Collins 1975) (Cylindrical Algebraic Decomposition)." @default.
- W2085258462 created "2016-06-24" @default.
- W2085258462 creator A5017274120 @default.
- W2085258462 date "1988-01-01" @default.
- W2085258462 modified "2023-09-27" @default.
- W2085258462 title "Algebraic methods for non-linear computational geometry (invited address)" @default.
- W2085258462 cites W2022266599 @default.
- W2085258462 cites W2067705970 @default.
- W2085258462 cites W2077378514 @default.
- W2085258462 cites W2164822988 @default.
- W2085258462 cites W3041834803 @default.
- W2085258462 cites W614866130 @default.
- W2085258462 doi "https://doi.org/10.1145/73393.73402" @default.
- W2085258462 hasPublicationYear "1988" @default.
- W2085258462 type Work @default.
- W2085258462 sameAs 2085258462 @default.
- W2085258462 citedByCount "1" @default.
- W2085258462 crossrefType "proceedings-article" @default.
- W2085258462 hasAuthorship W2085258462A5017274120 @default.
- W2085258462 hasConcept C10996884 @default.
- W2085258462 hasConcept C110812573 @default.
- W2085258462 hasConcept C134306372 @default.
- W2085258462 hasConcept C136119220 @default.
- W2085258462 hasConcept C186219872 @default.
- W2085258462 hasConcept C188032258 @default.
- W2085258462 hasConcept C201482947 @default.
- W2085258462 hasConcept C202444582 @default.
- W2085258462 hasConcept C2524010 @default.
- W2085258462 hasConcept C25971838 @default.
- W2085258462 hasConcept C26959085 @default.
- W2085258462 hasConcept C2731732 @default.
- W2085258462 hasConcept C33923547 @default.
- W2085258462 hasConcept C41008148 @default.
- W2085258462 hasConcept C51544822 @default.
- W2085258462 hasConcept C68363185 @default.
- W2085258462 hasConcept C69653121 @default.
- W2085258462 hasConcept C78045399 @default.
- W2085258462 hasConcept C9376300 @default.
- W2085258462 hasConceptScore W2085258462C10996884 @default.
- W2085258462 hasConceptScore W2085258462C110812573 @default.
- W2085258462 hasConceptScore W2085258462C134306372 @default.
- W2085258462 hasConceptScore W2085258462C136119220 @default.
- W2085258462 hasConceptScore W2085258462C186219872 @default.
- W2085258462 hasConceptScore W2085258462C188032258 @default.
- W2085258462 hasConceptScore W2085258462C201482947 @default.
- W2085258462 hasConceptScore W2085258462C202444582 @default.
- W2085258462 hasConceptScore W2085258462C2524010 @default.
- W2085258462 hasConceptScore W2085258462C25971838 @default.
- W2085258462 hasConceptScore W2085258462C26959085 @default.
- W2085258462 hasConceptScore W2085258462C2731732 @default.
- W2085258462 hasConceptScore W2085258462C33923547 @default.
- W2085258462 hasConceptScore W2085258462C41008148 @default.
- W2085258462 hasConceptScore W2085258462C51544822 @default.
- W2085258462 hasConceptScore W2085258462C68363185 @default.
- W2085258462 hasConceptScore W2085258462C69653121 @default.
- W2085258462 hasConceptScore W2085258462C78045399 @default.
- W2085258462 hasConceptScore W2085258462C9376300 @default.
- W2085258462 hasLocation W20852584621 @default.
- W2085258462 hasOpenAccess W2085258462 @default.
- W2085258462 hasPrimaryLocation W20852584621 @default.
- W2085258462 hasRelatedWork W116150972 @default.
- W2085258462 hasRelatedWork W1499714506 @default.
- W2085258462 hasRelatedWork W1585165666 @default.
- W2085258462 hasRelatedWork W1589261698 @default.
- W2085258462 hasRelatedWork W1601450783 @default.
- W2085258462 hasRelatedWork W1612323916 @default.
- W2085258462 hasRelatedWork W1676075617 @default.
- W2085258462 hasRelatedWork W1676348189 @default.
- W2085258462 hasRelatedWork W1996562072 @default.
- W2085258462 hasRelatedWork W2017532027 @default.
- W2085258462 hasRelatedWork W2074289218 @default.
- W2085258462 hasRelatedWork W2088380880 @default.
- W2085258462 hasRelatedWork W2122954958 @default.
- W2085258462 hasRelatedWork W2163679422 @default.
- W2085258462 hasRelatedWork W2230441834 @default.
- W2085258462 hasRelatedWork W2269514674 @default.
- W2085258462 hasRelatedWork W2301468954 @default.
- W2085258462 hasRelatedWork W2911968827 @default.
- W2085258462 hasRelatedWork W293719221 @default.
- W2085258462 hasRelatedWork W75023660 @default.
- W2085258462 isParatext "false" @default.
- W2085258462 isRetracted "false" @default.
- W2085258462 magId "2085258462" @default.
- W2085258462 workType "article" @default.