Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085292202> ?p ?o ?g. }
- W2085292202 endingPage "78" @default.
- W2085292202 startingPage "67" @default.
- W2085292202 abstract "This paper introduces a simple and effective approach to improve the accuracy of multiple sequence alignment. We use a natural measure to estimate the similarity of the input sequences, and based on this measure, we align the input sequences differently. For example, for inputs with high similarity, we consider the whole sequences and align them globally, while for those with moderately low similarity, we may ignore the flank regions and align them locally. To test the effectiveness of this approach, we have implemented a multiple sequence alignment tool called GLProbs and compared its performance with about one dozen leading alignment tools on three benchmark alignment databases, and GLProbs’s alignments have the best scores in almost all testings. We have also evaluated the practicability of the alignments of GLProbs by applying the tool to three biological applications, namely phylogenetic trees construction, protein secondary structure prediction and the detection of high risk members for cervical cancer in the HPV-E6 family, and the results are very encouraging." @default.
- W2085292202 created "2016-06-24" @default.
- W2085292202 creator A5033934413 @default.
- W2085292202 creator A5034360783 @default.
- W2085292202 creator A5046645047 @default.
- W2085292202 creator A5062947742 @default.
- W2085292202 creator A5076428463 @default.
- W2085292202 creator A5077116003 @default.
- W2085292202 creator A5081235526 @default.
- W2085292202 date "2015-01-01" @default.
- W2085292202 modified "2023-10-09" @default.
- W2085292202 title "GLProbs: Aligning Multiple Sequences Adaptively" @default.
- W2085292202 cites W1567621547 @default.
- W2085292202 cites W1694876563 @default.
- W2085292202 cites W1969153299 @default.
- W2085292202 cites W1974758710 @default.
- W2085292202 cites W2002069581 @default.
- W2085292202 cites W2008578449 @default.
- W2085292202 cites W2042901562 @default.
- W2085292202 cites W2060178110 @default.
- W2085292202 cites W2060425093 @default.
- W2085292202 cites W2068991236 @default.
- W2085292202 cites W2072339920 @default.
- W2085292202 cites W2075172158 @default.
- W2085292202 cites W2100449089 @default.
- W2085292202 cites W2101653819 @default.
- W2085292202 cites W2105862765 @default.
- W2085292202 cites W2106882534 @default.
- W2085292202 cites W2109607376 @default.
- W2085292202 cites W2120866529 @default.
- W2085292202 cites W2121691652 @default.
- W2085292202 cites W2127322768 @default.
- W2085292202 cites W2127774996 @default.
- W2085292202 cites W2129863073 @default.
- W2085292202 cites W2132632499 @default.
- W2085292202 cites W2132926880 @default.
- W2085292202 cites W2134025725 @default.
- W2085292202 cites W2137084536 @default.
- W2085292202 cites W2140872496 @default.
- W2085292202 cites W2144362290 @default.
- W2085292202 cites W2154730959 @default.
- W2085292202 cites W2162800127 @default.
- W2085292202 cites W2163860567 @default.
- W2085292202 cites W2170945060 @default.
- W2085292202 cites W4205161312 @default.
- W2085292202 cites W4245668478 @default.
- W2085292202 cites W4247715064 @default.
- W2085292202 cites W4382007889 @default.
- W2085292202 doi "https://doi.org/10.1109/tcbb.2014.2316820" @default.
- W2085292202 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26357079" @default.
- W2085292202 hasPublicationYear "2015" @default.
- W2085292202 type Work @default.
- W2085292202 sameAs 2085292202 @default.
- W2085292202 citedByCount "26" @default.
- W2085292202 countsByYear W20852922022015 @default.
- W2085292202 countsByYear W20852922022016 @default.
- W2085292202 countsByYear W20852922022017 @default.
- W2085292202 countsByYear W20852922022018 @default.
- W2085292202 countsByYear W20852922022019 @default.
- W2085292202 countsByYear W20852922022020 @default.
- W2085292202 countsByYear W20852922022021 @default.
- W2085292202 countsByYear W20852922022022 @default.
- W2085292202 crossrefType "journal-article" @default.
- W2085292202 hasAuthorship W2085292202A5033934413 @default.
- W2085292202 hasAuthorship W2085292202A5034360783 @default.
- W2085292202 hasAuthorship W2085292202A5046645047 @default.
- W2085292202 hasAuthorship W2085292202A5062947742 @default.
- W2085292202 hasAuthorship W2085292202A5076428463 @default.
- W2085292202 hasAuthorship W2085292202A5077116003 @default.
- W2085292202 hasAuthorship W2085292202A5081235526 @default.
- W2085292202 hasBestOaLocation W20852922022 @default.
- W2085292202 hasConcept C103278499 @default.
- W2085292202 hasConcept C104317684 @default.
- W2085292202 hasConcept C115961682 @default.
- W2085292202 hasConcept C124101348 @default.
- W2085292202 hasConcept C153180895 @default.
- W2085292202 hasConcept C154945302 @default.
- W2085292202 hasConcept C167625842 @default.
- W2085292202 hasConcept C180384323 @default.
- W2085292202 hasConcept C185798385 @default.
- W2085292202 hasConcept C193252679 @default.
- W2085292202 hasConcept C205649164 @default.
- W2085292202 hasConcept C2776517306 @default.
- W2085292202 hasConcept C2778112365 @default.
- W2085292202 hasConcept C2780009758 @default.
- W2085292202 hasConcept C41008148 @default.
- W2085292202 hasConcept C45484198 @default.
- W2085292202 hasConcept C4668613 @default.
- W2085292202 hasConcept C54355233 @default.
- W2085292202 hasConcept C58640448 @default.
- W2085292202 hasConcept C86803240 @default.
- W2085292202 hasConcept C88031987 @default.
- W2085292202 hasConceptScore W2085292202C103278499 @default.
- W2085292202 hasConceptScore W2085292202C104317684 @default.
- W2085292202 hasConceptScore W2085292202C115961682 @default.
- W2085292202 hasConceptScore W2085292202C124101348 @default.
- W2085292202 hasConceptScore W2085292202C153180895 @default.
- W2085292202 hasConceptScore W2085292202C154945302 @default.