Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085346022> ?p ?o ?g. }
- W2085346022 endingPage "2011" @default.
- W2085346022 startingPage "1997" @default.
- W2085346022 abstract "Let R be a commutative Noetherian ring and let M be a non-zero finitely generated R-module. Let I be an ideal of R and t a non-negative integer such that dimSuppHIi(M)⩽1 for all i<t. It is shown that the R-modules HI0(M),HI1(M),…,HIt−1(M) are I-cofinite and the R-module HomR(R/I,HIt(M)) is finitely generated. This immediately implies that if I has dimension one (i.e., dimR/I=1), then HIi(M) is I-cofinite for all i⩾0. This is a generalization of the main results of Delfino and Marley [D. Delfino, T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1997) 45–52] and Yoshida [K.I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997) 179–191] for an arbitrary Noetherian ring R. Also, we prove that if R is local and dimSuppHIi(M)⩽2 for all i<t, then the R-modules ExtRj(R/I,HIi(M)) and HomR(R/I,HIt(M)) are weakly Laskerian for all i<t and all j⩾0. As a consequence, it follows that the set of associated primes of HIi(M) is finite for all i⩾0, whenever dimR/I⩽2." @default.
- W2085346022 created "2016-06-24" @default.
- W2085346022 creator A5032279395 @default.
- W2085346022 creator A5079917554 @default.
- W2085346022 date "2009-04-01" @default.
- W2085346022 modified "2023-10-12" @default.
- W2085346022 title "Cofiniteness of local cohomology modules for ideals of small dimension" @default.
- W2085346022 cites W1490328786 @default.
- W2085346022 cites W1554323539 @default.
- W2085346022 cites W1655695888 @default.
- W2085346022 cites W1657352093 @default.
- W2085346022 cites W1672116099 @default.
- W2085346022 cites W187929863 @default.
- W2085346022 cites W1964840990 @default.
- W2085346022 cites W1966891956 @default.
- W2085346022 cites W1978404468 @default.
- W2085346022 cites W1981791420 @default.
- W2085346022 cites W1988334509 @default.
- W2085346022 cites W1990831092 @default.
- W2085346022 cites W1994296883 @default.
- W2085346022 cites W1997072414 @default.
- W2085346022 cites W2015969827 @default.
- W2085346022 cites W2020340946 @default.
- W2085346022 cites W2023978262 @default.
- W2085346022 cites W2037484307 @default.
- W2085346022 cites W2049684880 @default.
- W2085346022 cites W2054913874 @default.
- W2085346022 cites W2067751221 @default.
- W2085346022 cites W2069484402 @default.
- W2085346022 cites W2084044586 @default.
- W2085346022 cites W2088784827 @default.
- W2085346022 cites W2089964383 @default.
- W2085346022 cites W2111603516 @default.
- W2085346022 cites W2122229146 @default.
- W2085346022 cites W2160380715 @default.
- W2085346022 cites W2164384960 @default.
- W2085346022 cites W4210815839 @default.
- W2085346022 doi "https://doi.org/10.1016/j.jalgebra.2008.12.020" @default.
- W2085346022 hasPublicationYear "2009" @default.
- W2085346022 type Work @default.
- W2085346022 sameAs 2085346022 @default.
- W2085346022 citedByCount "83" @default.
- W2085346022 countsByYear W20853460222012 @default.
- W2085346022 countsByYear W20853460222013 @default.
- W2085346022 countsByYear W20853460222014 @default.
- W2085346022 countsByYear W20853460222015 @default.
- W2085346022 countsByYear W20853460222016 @default.
- W2085346022 countsByYear W20853460222017 @default.
- W2085346022 countsByYear W20853460222018 @default.
- W2085346022 countsByYear W20853460222019 @default.
- W2085346022 countsByYear W20853460222020 @default.
- W2085346022 countsByYear W20853460222021 @default.
- W2085346022 countsByYear W20853460222022 @default.
- W2085346022 countsByYear W20853460222023 @default.
- W2085346022 crossrefType "journal-article" @default.
- W2085346022 hasAuthorship W2085346022A5032279395 @default.
- W2085346022 hasAuthorship W2085346022A5079917554 @default.
- W2085346022 hasBestOaLocation W20853460222 @default.
- W2085346022 hasConcept C111472728 @default.
- W2085346022 hasConcept C114614502 @default.
- W2085346022 hasConcept C118615104 @default.
- W2085346022 hasConcept C134306372 @default.
- W2085346022 hasConcept C136119220 @default.
- W2085346022 hasConcept C138885662 @default.
- W2085346022 hasConcept C142109727 @default.
- W2085346022 hasConcept C162860070 @default.
- W2085346022 hasConcept C177148314 @default.
- W2085346022 hasConcept C178790620 @default.
- W2085346022 hasConcept C183778304 @default.
- W2085346022 hasConcept C185592680 @default.
- W2085346022 hasConcept C199360897 @default.
- W2085346022 hasConcept C202444582 @default.
- W2085346022 hasConcept C2776639384 @default.
- W2085346022 hasConcept C2777041388 @default.
- W2085346022 hasConcept C2777726979 @default.
- W2085346022 hasConcept C2779057376 @default.
- W2085346022 hasConcept C2780378348 @default.
- W2085346022 hasConcept C33676613 @default.
- W2085346022 hasConcept C33923547 @default.
- W2085346022 hasConcept C41008148 @default.
- W2085346022 hasConcept C96489954 @default.
- W2085346022 hasConcept C97137487 @default.
- W2085346022 hasConceptScore W2085346022C111472728 @default.
- W2085346022 hasConceptScore W2085346022C114614502 @default.
- W2085346022 hasConceptScore W2085346022C118615104 @default.
- W2085346022 hasConceptScore W2085346022C134306372 @default.
- W2085346022 hasConceptScore W2085346022C136119220 @default.
- W2085346022 hasConceptScore W2085346022C138885662 @default.
- W2085346022 hasConceptScore W2085346022C142109727 @default.
- W2085346022 hasConceptScore W2085346022C162860070 @default.
- W2085346022 hasConceptScore W2085346022C177148314 @default.
- W2085346022 hasConceptScore W2085346022C178790620 @default.
- W2085346022 hasConceptScore W2085346022C183778304 @default.
- W2085346022 hasConceptScore W2085346022C185592680 @default.
- W2085346022 hasConceptScore W2085346022C199360897 @default.
- W2085346022 hasConceptScore W2085346022C202444582 @default.
- W2085346022 hasConceptScore W2085346022C2776639384 @default.
- W2085346022 hasConceptScore W2085346022C2777041388 @default.