Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085392110> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2085392110 abstract "Neglecting missing values in diagnostic models can result in unreliable and suboptimal performance on new data. In this study, the authors imputed missing values for the CA-125 tumor marker in a large data set of ovarian tumors that was used to develop models for predicting malignancy. Four imputation techniques were applied: regression imputation, expectation-maximization, data augmentation, and hotdeck. Models using the imputed data sets were compared with models without CA-125 to investigate the important clinical issue concerning the necessity of CA-125 information for diagnostic models and with models using only complete cases to investigate differences between imputation and complete case strategies for missing values. The models are based on Bayesian generalized linear models (GLMs) and Bayesian least squares support vector machines. Results indicate that the use of CA-125 resulted in small, clinically nonsignificant increases in the AUC of diagnostic models. Minor differences between imputation methods were observed, and imputing CA-125 resulted in minor differences in the AUC compared with complete case analysis (CCA). However, GLM parameter estimates of predictor variables often differed between CCA and models based on imputation. The authors conclude that CA-125 is not indispensable in diagnostic models for ovarian tumors and that missing value imputation is preferred over CCA." @default.
- W2085392110 created "2016-06-24" @default.
- W2085392110 creator A5002144411 @default.
- W2085392110 creator A5014360951 @default.
- W2085392110 creator A5027272828 @default.
- W2085392110 creator A5049055621 @default.
- W2085392110 creator A5086320066 @default.
- W2085392110 date "2009-07-15" @default.
- W2085392110 modified "2023-09-26" @default.
- W2085392110 title "Evaluation of Imputation Methods in Ovarian Tumor Diagnostic Models Using Generalized Linear Models and Support Vector Machines" @default.
- W2085392110 cites W1496317909 @default.
- W2085392110 cites W2031668066 @default.
- W2085392110 cites W2039551403 @default.
- W2085392110 cites W2040958097 @default.
- W2085392110 cites W2042934584 @default.
- W2085392110 cites W2043103956 @default.
- W2085392110 cites W2061273963 @default.
- W2085392110 cites W2087046046 @default.
- W2085392110 cites W2102371025 @default.
- W2085392110 cites W2104730351 @default.
- W2085392110 cites W2112339374 @default.
- W2085392110 cites W2118502261 @default.
- W2085392110 cites W2139701068 @default.
- W2085392110 cites W2154755275 @default.
- W2085392110 cites W2156267802 @default.
- W2085392110 cites W2174160981 @default.
- W2085392110 cites W4211101039 @default.
- W2085392110 doi "https://doi.org/10.1177/0272989x09340579" @default.
- W2085392110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19605886" @default.
- W2085392110 hasPublicationYear "2009" @default.
- W2085392110 type Work @default.
- W2085392110 sameAs 2085392110 @default.
- W2085392110 citedByCount "2" @default.
- W2085392110 countsByYear W20853921102014 @default.
- W2085392110 crossrefType "journal-article" @default.
- W2085392110 hasAuthorship W2085392110A5002144411 @default.
- W2085392110 hasAuthorship W2085392110A5014360951 @default.
- W2085392110 hasAuthorship W2085392110A5027272828 @default.
- W2085392110 hasAuthorship W2085392110A5049055621 @default.
- W2085392110 hasAuthorship W2085392110A5086320066 @default.
- W2085392110 hasConcept C105795698 @default.
- W2085392110 hasConcept C119857082 @default.
- W2085392110 hasConcept C12267149 @default.
- W2085392110 hasConcept C154945302 @default.
- W2085392110 hasConcept C33923547 @default.
- W2085392110 hasConcept C41008148 @default.
- W2085392110 hasConcept C58041806 @default.
- W2085392110 hasConcept C9357733 @default.
- W2085392110 hasConceptScore W2085392110C105795698 @default.
- W2085392110 hasConceptScore W2085392110C119857082 @default.
- W2085392110 hasConceptScore W2085392110C12267149 @default.
- W2085392110 hasConceptScore W2085392110C154945302 @default.
- W2085392110 hasConceptScore W2085392110C33923547 @default.
- W2085392110 hasConceptScore W2085392110C41008148 @default.
- W2085392110 hasConceptScore W2085392110C58041806 @default.
- W2085392110 hasConceptScore W2085392110C9357733 @default.
- W2085392110 hasLocation W20853921101 @default.
- W2085392110 hasLocation W20853921102 @default.
- W2085392110 hasOpenAccess W2085392110 @default.
- W2085392110 hasPrimaryLocation W20853921101 @default.
- W2085392110 hasRelatedWork W1965429011 @default.
- W2085392110 hasRelatedWork W1978151685 @default.
- W2085392110 hasRelatedWork W2042144753 @default.
- W2085392110 hasRelatedWork W2056718591 @default.
- W2085392110 hasRelatedWork W2075055098 @default.
- W2085392110 hasRelatedWork W2075372833 @default.
- W2085392110 hasRelatedWork W2091338162 @default.
- W2085392110 hasRelatedWork W2093369230 @default.
- W2085392110 hasRelatedWork W2096857094 @default.
- W2085392110 hasRelatedWork W2121872887 @default.
- W2085392110 hasRelatedWork W2143363180 @default.
- W2085392110 hasRelatedWork W2159550497 @default.
- W2085392110 hasRelatedWork W2208223059 @default.
- W2085392110 hasRelatedWork W2238296078 @default.
- W2085392110 hasRelatedWork W2357772289 @default.
- W2085392110 hasRelatedWork W2436232021 @default.
- W2085392110 hasRelatedWork W2523619163 @default.
- W2085392110 hasRelatedWork W2899974865 @default.
- W2085392110 hasRelatedWork W3120821924 @default.
- W2085392110 hasRelatedWork W178501936 @default.
- W2085392110 isParatext "false" @default.
- W2085392110 isRetracted "false" @default.
- W2085392110 magId "2085392110" @default.
- W2085392110 workType "article" @default.