Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085433809> ?p ?o ?g. }
- W2085433809 endingPage "446" @default.
- W2085433809 startingPage "433" @default.
- W2085433809 abstract "This paper describes the coevolutionary algorithm L-Co-R (Lags COevolving with Radial Basis Function Neural Networks – RBFNs), and analyzes its performance in the forecasting of time series in the short, medium and long terms. The method allows the coevolution, in a single process, of the RBFNs as the time series models, as well as the set of lags to be used for predictions, integrating two genetic algorithms with real and binary codification, respectively. The individuals of one population are radial basis neural networks (used as models), while sets of candidate lags are individuals of the second population. In order to test the behavior of the algorithm in a new context of a variable horizon, 5 different measures have been analyzed, for more than 30 different databases, comparing this algorithm against six existing algorithms and for seven different prediction horizons. Statistical analysis of the results shows that L-Co-R outperforms other methods, regardless of the horizon, and is capable of predicting short, medium or long horizons using real known values." @default.
- W2085433809 created "2016-06-24" @default.
- W2085433809 creator A5024660179 @default.
- W2085433809 creator A5037101530 @default.
- W2085433809 creator A5072849731 @default.
- W2085433809 creator A5076646895 @default.
- W2085433809 date "2014-03-01" @default.
- W2085433809 modified "2023-09-27" @default.
- W2085433809 title "Short, medium and long term forecasting of time series using the L-Co-R algorithm" @default.
- W2085433809 cites W1514048016 @default.
- W2085433809 cites W1549386224 @default.
- W2085433809 cites W1555689267 @default.
- W2085433809 cites W1586335931 @default.
- W2085433809 cites W1930187923 @default.
- W2085433809 cites W1966295073 @default.
- W2085433809 cites W1983901095 @default.
- W2085433809 cites W1984503224 @default.
- W2085433809 cites W1986870493 @default.
- W2085433809 cites W1986890389 @default.
- W2085433809 cites W1991261837 @default.
- W2085433809 cites W1991667190 @default.
- W2085433809 cites W1994186605 @default.
- W2085433809 cites W1995205965 @default.
- W2085433809 cites W1995234002 @default.
- W2085433809 cites W1997151153 @default.
- W2085433809 cites W2004735350 @default.
- W2085433809 cites W2008442094 @default.
- W2085433809 cites W2008743043 @default.
- W2085433809 cites W2011227258 @default.
- W2085433809 cites W2016210396 @default.
- W2085433809 cites W2016574294 @default.
- W2085433809 cites W2018295715 @default.
- W2085433809 cites W2018389776 @default.
- W2085433809 cites W2025987505 @default.
- W2085433809 cites W2030347721 @default.
- W2085433809 cites W2040337679 @default.
- W2085433809 cites W2048665112 @default.
- W2085433809 cites W2049468306 @default.
- W2085433809 cites W2049736842 @default.
- W2085433809 cites W2050096258 @default.
- W2085433809 cites W2050288270 @default.
- W2085433809 cites W2053865013 @default.
- W2085433809 cites W2058271794 @default.
- W2085433809 cites W2071064323 @default.
- W2085433809 cites W2077019318 @default.
- W2085433809 cites W2080106723 @default.
- W2085433809 cites W2080690725 @default.
- W2085433809 cites W2092172498 @default.
- W2085433809 cites W2100211715 @default.
- W2085433809 cites W2117829824 @default.
- W2085433809 cites W2121296656 @default.
- W2085433809 cites W2124984926 @default.
- W2085433809 cites W2125121527 @default.
- W2085433809 cites W2132632244 @default.
- W2085433809 cites W2135951444 @default.
- W2085433809 cites W2136271007 @default.
- W2085433809 cites W2147028502 @default.
- W2085433809 cites W2154326182 @default.
- W2085433809 cites W2154789382 @default.
- W2085433809 cites W2157590492 @default.
- W2085433809 cites W2159209327 @default.
- W2085433809 cites W2166106466 @default.
- W2085433809 cites W2167036165 @default.
- W2085433809 cites W2168838591 @default.
- W2085433809 cites W3122598275 @default.
- W2085433809 doi "https://doi.org/10.1016/j.neucom.2013.08.023" @default.
- W2085433809 hasPublicationYear "2014" @default.
- W2085433809 type Work @default.
- W2085433809 sameAs 2085433809 @default.
- W2085433809 citedByCount "16" @default.
- W2085433809 countsByYear W20854338092014 @default.
- W2085433809 countsByYear W20854338092015 @default.
- W2085433809 countsByYear W20854338092016 @default.
- W2085433809 countsByYear W20854338092017 @default.
- W2085433809 countsByYear W20854338092018 @default.
- W2085433809 countsByYear W20854338092019 @default.
- W2085433809 countsByYear W20854338092020 @default.
- W2085433809 countsByYear W20854338092022 @default.
- W2085433809 crossrefType "journal-article" @default.
- W2085433809 hasAuthorship W2085433809A5024660179 @default.
- W2085433809 hasAuthorship W2085433809A5037101530 @default.
- W2085433809 hasAuthorship W2085433809A5072849731 @default.
- W2085433809 hasAuthorship W2085433809A5076646895 @default.
- W2085433809 hasConcept C11413529 @default.
- W2085433809 hasConcept C119857082 @default.
- W2085433809 hasConcept C121332964 @default.
- W2085433809 hasConcept C126255220 @default.
- W2085433809 hasConcept C14036430 @default.
- W2085433809 hasConcept C143724316 @default.
- W2085433809 hasConcept C144024400 @default.
- W2085433809 hasConcept C149923435 @default.
- W2085433809 hasConcept C151406439 @default.
- W2085433809 hasConcept C151730666 @default.
- W2085433809 hasConcept C154945302 @default.
- W2085433809 hasConcept C159176650 @default.
- W2085433809 hasConcept C177264268 @default.
- W2085433809 hasConcept C199360897 @default.
- W2085433809 hasConcept C2524010 @default.