Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085440282> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2085440282 abstract "Abstract A correlation for the estimation of surface tension of hydrocarbon gas and hydrocarbon liquids against water has been developed. Two correlating parameters, density difference between phases, and reduced temperature jar the hydrocarbon phase, were the basis in the correlation of data. New measurements the surface tension for three reservoir oils-brine are also presented. Introduction Many reservoir engineering studies require knowledge of the surface tension of water-gas and water-oil systems. Examples are imbibition studies and calculation of fluid saturations in water-gas and water-oil regions. Capillary pressure is directly proportional to the surface tension between the two phases. Because at reservoir conditions the surface tension of water-gas and water-oil systems is generally about one order of magnitude higher than surface tension of equilibrium oil-gas systems, one would expect the capillary pressure to strongly influence the flow process in water-gas and water-oil systems. In the case of imbibition in fractured reservoirs, capillary pressure is perhaps the most important parameter affecting the flow performance of the reservoir. Macleod's empirical equation(l) and later theoretical deductions(2) give the relationship between the tension at the interface and the density difference between phases for a pure substance: Equation (Available In Full Paper) In this equation, ∆p is the density difference between phases, M is the molecular weight, σ is the surface tension and P is a temperature independent parameter known as parachor. Eq. 1 yields constant values of P over wide temperature ranges for pure hydrocarbons. Weinaug and Katz(3) extended Eq. 1 to mixtures in the following form: Equation (Available In Full Paper) Eq. 2 or various forms of this equation have been applied to binary hydrocarbon systems successfully. Apparently no attempt has been made to employ a Macleod-type relationship for the correlation and/or estimation of the surface tension of pure liquid hydrocarbons-water, gas-water and oil-water systems. As it will be demonstrated later, Eq. 2 is not applicable even for the case of water-methane surface tension estimation. For the tension between water and pure hydrocarbons, measurements at reservoir temperatures and pressures have been reponed in the literature. Examples are: methane, propane, n-butane, n-pentane, n-hexane, n-heptane, n-octane, n-dodecane and benzene surface tension against water. However, tension measurements between reservoir crude and water which also provide density and property of phases are scarce in the literature. The present study was undertaken to:develop a correlation for the tension of methane, and other hydrocarbons against water at reservoir conditions;provide data on the tension between water and reservoir oils together with compositional analyses and properties of the phases; andobserve the difference between distilled water and brine surface tension with pure hydrocarbons and reservoir oils, and to examine the appropriateness of a single correlation for both water-pure hydrocarbons and water-reservoir oils. Literature Review In this section, the literature data on the surface tension betweenwater-methane and water-natural gases,water-pure liquid hydrocarbons, andwater-reservoir oils will be reviewed. The main goal is the correlation of the surface tension data at reservoir pressures and temperatures." @default.
- W2085440282 created "2016-06-24" @default.
- W2085440282 creator A5027735673 @default.
- W2085440282 creator A5062188169 @default.
- W2085440282 date "1988-05-01" @default.
- W2085440282 modified "2023-09-28" @default.
- W2085440282 title "Surface Tension Of Water-Hydrocarbon Systems At Reservoir Conditions" @default.
- W2085440282 doi "https://doi.org/10.2118/88-03-03" @default.
- W2085440282 hasPublicationYear "1988" @default.
- W2085440282 type Work @default.
- W2085440282 sameAs 2085440282 @default.
- W2085440282 citedByCount "108" @default.
- W2085440282 countsByYear W20854402822012 @default.
- W2085440282 countsByYear W20854402822014 @default.
- W2085440282 countsByYear W20854402822015 @default.
- W2085440282 countsByYear W20854402822016 @default.
- W2085440282 countsByYear W20854402822017 @default.
- W2085440282 countsByYear W20854402822018 @default.
- W2085440282 countsByYear W20854402822019 @default.
- W2085440282 countsByYear W20854402822020 @default.
- W2085440282 countsByYear W20854402822021 @default.
- W2085440282 countsByYear W20854402822022 @default.
- W2085440282 countsByYear W20854402822023 @default.
- W2085440282 crossrefType "journal-article" @default.
- W2085440282 hasAuthorship W2085440282A5027735673 @default.
- W2085440282 hasAuthorship W2085440282A5062188169 @default.
- W2085440282 hasConcept C100701293 @default.
- W2085440282 hasConcept C105569014 @default.
- W2085440282 hasConcept C121332964 @default.
- W2085440282 hasConcept C127313418 @default.
- W2085440282 hasConcept C178790620 @default.
- W2085440282 hasConcept C185592680 @default.
- W2085440282 hasConcept C196806460 @default.
- W2085440282 hasConcept C2777207669 @default.
- W2085440282 hasConcept C2778409621 @default.
- W2085440282 hasConcept C28413391 @default.
- W2085440282 hasConcept C48797263 @default.
- W2085440282 hasConcept C59822182 @default.
- W2085440282 hasConcept C6648577 @default.
- W2085440282 hasConcept C78762247 @default.
- W2085440282 hasConcept C86803240 @default.
- W2085440282 hasConcept C8892853 @default.
- W2085440282 hasConcept C97355855 @default.
- W2085440282 hasConceptScore W2085440282C100701293 @default.
- W2085440282 hasConceptScore W2085440282C105569014 @default.
- W2085440282 hasConceptScore W2085440282C121332964 @default.
- W2085440282 hasConceptScore W2085440282C127313418 @default.
- W2085440282 hasConceptScore W2085440282C178790620 @default.
- W2085440282 hasConceptScore W2085440282C185592680 @default.
- W2085440282 hasConceptScore W2085440282C196806460 @default.
- W2085440282 hasConceptScore W2085440282C2777207669 @default.
- W2085440282 hasConceptScore W2085440282C2778409621 @default.
- W2085440282 hasConceptScore W2085440282C28413391 @default.
- W2085440282 hasConceptScore W2085440282C48797263 @default.
- W2085440282 hasConceptScore W2085440282C59822182 @default.
- W2085440282 hasConceptScore W2085440282C6648577 @default.
- W2085440282 hasConceptScore W2085440282C78762247 @default.
- W2085440282 hasConceptScore W2085440282C86803240 @default.
- W2085440282 hasConceptScore W2085440282C8892853 @default.
- W2085440282 hasConceptScore W2085440282C97355855 @default.
- W2085440282 hasIssue "03" @default.
- W2085440282 hasLocation W20854402821 @default.
- W2085440282 hasOpenAccess W2085440282 @default.
- W2085440282 hasPrimaryLocation W20854402821 @default.
- W2085440282 hasRelatedWork W2015010015 @default.
- W2085440282 hasRelatedWork W2034145296 @default.
- W2085440282 hasRelatedWork W2045602625 @default.
- W2085440282 hasRelatedWork W2085440282 @default.
- W2085440282 hasRelatedWork W2328506129 @default.
- W2085440282 hasRelatedWork W2384498761 @default.
- W2085440282 hasRelatedWork W2546322034 @default.
- W2085440282 hasRelatedWork W2747419289 @default.
- W2085440282 hasRelatedWork W2802984969 @default.
- W2085440282 hasRelatedWork W3174174413 @default.
- W2085440282 hasVolume "27" @default.
- W2085440282 isParatext "false" @default.
- W2085440282 isRetracted "false" @default.
- W2085440282 magId "2085440282" @default.
- W2085440282 workType "article" @default.