Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085455243> ?p ?o ?g. }
- W2085455243 endingPage "26" @default.
- W2085455243 startingPage "13" @default.
- W2085455243 abstract "It has been proposed that a carbon steel overpack is used as part of the engineered barrier system for the geological disposal of radioactive wastes developed by Andra. The direct contact of the iron with the geological environment creates potential physical and chemical changes in the near field environment of the repository. Therefore, a thorough understanding of the mineralogical/chemical evolution caused by the interactions of iron with clay is necessary to the assessment of the performance of the geological disposal. Geochemical models have been developed (using the code KINDIS) to simulate batch experiments on iron–claystone interactions. The experiments included iron power and Callovo-Oxfordian (COx) claystone that were reacted at temperature of 90 °C for 90 days. The overall objective of this modeling work aims at an enhanced mechanistic understanding of clay–iron interactions observed in experimental studies and possible implications for engineered barrier performance. The experimental observations were successfully reproduced by the model regarding geochemical evolution and mineralogical transformations. For example, the stability of pH around 7 and total dissolved carbon in the aqueous solution, which are controlled by saturation state of carbonates in the system, are predicted accurately. In addition, the model predicts that during the interactions between iron and clays greenalite, chukanovite, and saponite form as the main secondary minerals. Moreover, the destabilization of some important primary minerals in the claystone such as quartz, illite, and smectite are also indicated by the numerical simulations. The consistency of the predictions with the experimental observations can be shown in activity diagrams of these secondary minerals, which represent the relation of H4SiO4 activity and CO2 partial pressure or Ca2+ activity. Another important result is that both the model and experimental data indicated that magnetite is not formed in the experiments. The analysis of three sensitivity cases made clear that the uncertainty in corrosion and dissolution rates for iron, quartz, and illite plays an important role on the predicted evolution of pH in the aqueous solution and the formation of secondary minerals. Through this modeling work, the controlling mechanism of the interactions of iron, clay, and water at the specific conditions is fairly well understood. However, the robustness of the geochemical code KINDIS should also be tested against other experiments with different experimental conditions." @default.
- W2085455243 created "2016-06-24" @default.
- W2085455243 creator A5024808382 @default.
- W2085455243 creator A5063909039 @default.
- W2085455243 creator A5065314923 @default.
- W2085455243 creator A5071749425 @default.
- W2085455243 date "2015-02-01" @default.
- W2085455243 modified "2023-10-14" @default.
- W2085455243 title "Kinetic modeling of interactions between iron, clay and water: Comparison with data from batch experiments" @default.
- W2085455243 cites W1527101551 @default.
- W2085455243 cites W1967251656 @default.
- W2085455243 cites W1970214725 @default.
- W2085455243 cites W1973254267 @default.
- W2085455243 cites W1973616986 @default.
- W2085455243 cites W1974836081 @default.
- W2085455243 cites W1976299022 @default.
- W2085455243 cites W1981623999 @default.
- W2085455243 cites W1989197278 @default.
- W2085455243 cites W1989664729 @default.
- W2085455243 cites W1990938797 @default.
- W2085455243 cites W1993499483 @default.
- W2085455243 cites W1993730740 @default.
- W2085455243 cites W1995584943 @default.
- W2085455243 cites W1996768414 @default.
- W2085455243 cites W1999165439 @default.
- W2085455243 cites W1999988439 @default.
- W2085455243 cites W2000317229 @default.
- W2085455243 cites W2001356524 @default.
- W2085455243 cites W2002617566 @default.
- W2085455243 cites W2003461155 @default.
- W2085455243 cites W2007766503 @default.
- W2085455243 cites W2008629539 @default.
- W2085455243 cites W2010621570 @default.
- W2085455243 cites W2011254969 @default.
- W2085455243 cites W2016466974 @default.
- W2085455243 cites W2017415904 @default.
- W2085455243 cites W2019350506 @default.
- W2085455243 cites W2020496176 @default.
- W2085455243 cites W2020836069 @default.
- W2085455243 cites W2022616308 @default.
- W2085455243 cites W2023556360 @default.
- W2085455243 cites W2024402527 @default.
- W2085455243 cites W2028781145 @default.
- W2085455243 cites W2035803994 @default.
- W2085455243 cites W2036129894 @default.
- W2085455243 cites W2043843726 @default.
- W2085455243 cites W2046004406 @default.
- W2085455243 cites W2047694097 @default.
- W2085455243 cites W2049918353 @default.
- W2085455243 cites W2051419224 @default.
- W2085455243 cites W2056627274 @default.
- W2085455243 cites W2058679923 @default.
- W2085455243 cites W2064095481 @default.
- W2085455243 cites W2066843635 @default.
- W2085455243 cites W2068382389 @default.
- W2085455243 cites W2068857519 @default.
- W2085455243 cites W2072475832 @default.
- W2085455243 cites W2074862219 @default.
- W2085455243 cites W2076685868 @default.
- W2085455243 cites W2079006918 @default.
- W2085455243 cites W2079421544 @default.
- W2085455243 cites W2082208976 @default.
- W2085455243 cites W2082584843 @default.
- W2085455243 cites W2082785262 @default.
- W2085455243 cites W2084283421 @default.
- W2085455243 cites W2091405292 @default.
- W2085455243 cites W2109075239 @default.
- W2085455243 cites W2113574130 @default.
- W2085455243 cites W2114837562 @default.
- W2085455243 cites W2121179494 @default.
- W2085455243 cites W2123094330 @default.
- W2085455243 cites W2132925139 @default.
- W2085455243 cites W2142800389 @default.
- W2085455243 cites W2149556857 @default.
- W2085455243 cites W2155762886 @default.
- W2085455243 cites W2257513595 @default.
- W2085455243 cites W2320567613 @default.
- W2085455243 cites W2328021513 @default.
- W2085455243 cites W2330516177 @default.
- W2085455243 cites W2334540651 @default.
- W2085455243 doi "https://doi.org/10.1016/j.apgeochem.2014.12.003" @default.
- W2085455243 hasPublicationYear "2015" @default.
- W2085455243 type Work @default.
- W2085455243 sameAs 2085455243 @default.
- W2085455243 citedByCount "10" @default.
- W2085455243 countsByYear W20854552432016 @default.
- W2085455243 countsByYear W20854552432017 @default.
- W2085455243 countsByYear W20854552432018 @default.
- W2085455243 countsByYear W20854552432019 @default.
- W2085455243 countsByYear W20854552432020 @default.
- W2085455243 countsByYear W20854552432021 @default.
- W2085455243 countsByYear W20854552432022 @default.
- W2085455243 countsByYear W20854552432023 @default.
- W2085455243 crossrefType "journal-article" @default.
- W2085455243 hasAuthorship W2085455243A5024808382 @default.
- W2085455243 hasAuthorship W2085455243A5063909039 @default.
- W2085455243 hasAuthorship W2085455243A5065314923 @default.
- W2085455243 hasAuthorship W2085455243A5071749425 @default.