Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085480009> ?p ?o ?g. }
- W2085480009 endingPage "22" @default.
- W2085480009 startingPage "1" @default.
- W2085480009 abstract "Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equations with a nonlinear source term (TSFFPENST), which involve the Caputo time fractional derivative (CTFD) of order (0, 1) and the symmetric Riesz space fractional derivative (RSFD) of order (1, 2]. Approximating the CTFD and RSFD using the L1-algorithm and shifted Grünwald method, respectively, a computationally effective numerical method is presented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method are investigated. Finally, numerical experiments are carried out to support the theoretical claims." @default.
- W2085480009 created "2016-06-24" @default.
- W2085480009 creator A5007130769 @default.
- W2085480009 creator A5027730707 @default.
- W2085480009 creator A5073778062 @default.
- W2085480009 date "2010-01-01" @default.
- W2085480009 modified "2023-10-17" @default.
- W2085480009 title "Stability and Convergence of an Effective Numerical Method for the Time-Space Fractional Fokker-Planck Equation with a Nonlinear Source Term" @default.
- W2085480009 cites W1977696410 @default.
- W2085480009 cites W1980154613 @default.
- W2085480009 cites W1988571032 @default.
- W2085480009 cites W1990956480 @default.
- W2085480009 cites W1991263112 @default.
- W2085480009 cites W1997700622 @default.
- W2085480009 cites W1999134695 @default.
- W2085480009 cites W2001031344 @default.
- W2085480009 cites W2006359060 @default.
- W2085480009 cites W2011093786 @default.
- W2085480009 cites W2030193783 @default.
- W2085480009 cites W2051614693 @default.
- W2085480009 cites W2054899953 @default.
- W2085480009 cites W2056829543 @default.
- W2085480009 cites W2061368437 @default.
- W2085480009 cites W2062517214 @default.
- W2085480009 cites W2064361774 @default.
- W2085480009 cites W2064641940 @default.
- W2085480009 cites W2065213885 @default.
- W2085480009 cites W2099111135 @default.
- W2085480009 cites W2104736025 @default.
- W2085480009 cites W2107162131 @default.
- W2085480009 cites W2119671522 @default.
- W2085480009 cites W2127769310 @default.
- W2085480009 cites W2158588384 @default.
- W2085480009 doi "https://doi.org/10.1155/2010/464321" @default.
- W2085480009 hasPublicationYear "2010" @default.
- W2085480009 type Work @default.
- W2085480009 sameAs 2085480009 @default.
- W2085480009 citedByCount "22" @default.
- W2085480009 countsByYear W20854800092013 @default.
- W2085480009 countsByYear W20854800092014 @default.
- W2085480009 countsByYear W20854800092015 @default.
- W2085480009 countsByYear W20854800092016 @default.
- W2085480009 countsByYear W20854800092017 @default.
- W2085480009 countsByYear W20854800092018 @default.
- W2085480009 countsByYear W20854800092019 @default.
- W2085480009 countsByYear W20854800092020 @default.
- W2085480009 countsByYear W20854800092022 @default.
- W2085480009 crossrefType "journal-article" @default.
- W2085480009 hasAuthorship W2085480009A5007130769 @default.
- W2085480009 hasAuthorship W2085480009A5027730707 @default.
- W2085480009 hasAuthorship W2085480009A5073778062 @default.
- W2085480009 hasBestOaLocation W20854800091 @default.
- W2085480009 hasConcept C111919701 @default.
- W2085480009 hasConcept C112972136 @default.
- W2085480009 hasConcept C119857082 @default.
- W2085480009 hasConcept C121332964 @default.
- W2085480009 hasConcept C134306372 @default.
- W2085480009 hasConcept C154249771 @default.
- W2085480009 hasConcept C15744967 @default.
- W2085480009 hasConcept C158622935 @default.
- W2085480009 hasConcept C162324750 @default.
- W2085480009 hasConcept C164602753 @default.
- W2085480009 hasConcept C17685861 @default.
- W2085480009 hasConcept C2776029896 @default.
- W2085480009 hasConcept C2777303404 @default.
- W2085480009 hasConcept C2778572836 @default.
- W2085480009 hasConcept C28826006 @default.
- W2085480009 hasConcept C3017618536 @default.
- W2085480009 hasConcept C33923547 @default.
- W2085480009 hasConcept C41008148 @default.
- W2085480009 hasConcept C48753275 @default.
- W2085480009 hasConcept C50522688 @default.
- W2085480009 hasConcept C56739046 @default.
- W2085480009 hasConcept C61797465 @default.
- W2085480009 hasConcept C62520636 @default.
- W2085480009 hasConcept C69123182 @default.
- W2085480009 hasConcept C77805123 @default.
- W2085480009 hasConcept C93779851 @default.
- W2085480009 hasConceptScore W2085480009C111919701 @default.
- W2085480009 hasConceptScore W2085480009C112972136 @default.
- W2085480009 hasConceptScore W2085480009C119857082 @default.
- W2085480009 hasConceptScore W2085480009C121332964 @default.
- W2085480009 hasConceptScore W2085480009C134306372 @default.
- W2085480009 hasConceptScore W2085480009C154249771 @default.
- W2085480009 hasConceptScore W2085480009C15744967 @default.
- W2085480009 hasConceptScore W2085480009C158622935 @default.
- W2085480009 hasConceptScore W2085480009C162324750 @default.
- W2085480009 hasConceptScore W2085480009C164602753 @default.
- W2085480009 hasConceptScore W2085480009C17685861 @default.
- W2085480009 hasConceptScore W2085480009C2776029896 @default.
- W2085480009 hasConceptScore W2085480009C2777303404 @default.
- W2085480009 hasConceptScore W2085480009C2778572836 @default.
- W2085480009 hasConceptScore W2085480009C28826006 @default.
- W2085480009 hasConceptScore W2085480009C3017618536 @default.
- W2085480009 hasConceptScore W2085480009C33923547 @default.
- W2085480009 hasConceptScore W2085480009C41008148 @default.
- W2085480009 hasConceptScore W2085480009C48753275 @default.
- W2085480009 hasConceptScore W2085480009C50522688 @default.