Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085487002> ?p ?o ?g. }
- W2085487002 endingPage "6483" @default.
- W2085487002 startingPage "6470" @default.
- W2085487002 abstract "The formation of a tribologically reliable interface between the magnetic recording disk and the magnetic recording head in hard-disk drives is predicated upon the presence of a molecularly thin perfluoropolyether (PFPE) lubricant film. The molecular interactions that develop between the PFPE lubricant and the underlying amorphous carbon overcoat of the magnetic recording disk govern the adhesion, physical coverage, thermal stability, and mobility of the lubricant on the carbon surface and hence are of paramount importance in defining the tribological performance of the drive. In this work, information pertaining to the interfacial interactions between the hydroxyl-terminated PFPE lubricant Zdol and amorphous carbon surfaces is obtained via ab initio calculations. The small fluorinated ether molecules CF3OCF2CH2OH (ZD) and CF3OCF3 (PFDME) were used as computationally tractable models for the PFPE lubricants. A population analysis is performed on the ZD model lubricant and the various chemical functionalities known to exist on amorphous carbon surfaces. In the case of an amorphous, hydrogenated carbon surface, CHx, the adhesive interactions of the PFPE backbone with the nonpolar component of the carbon surface were modeled by the interaction of ZD with simple hydrocarbons. The attractive van der Waals interactions that result are comparatively weak and insufficient at room temperature to overcome the associated decrease in entropy. As a consequence, these interactions will not contribute significantly to the adhesion of PFPE's to the carbon surfaces under disk-drive operating conditions. The primary source of adhesion in the Zdol−CHx system stems from hydrogen bonding of the hydroxyl end groups of the Zdol lubricant with the carboxylic acid and ketone functionalities on the CHx surface. The computed binding energies of the ZD + ketone and ZD + carboxylic acid interactions are −11 and −15 kcal/mol, respectively. These interaction strengths are large enough to compensate for the entropy decrease and hence result in a net decrease in the free energy. In addition to these thermodynamically stable adhesive interactions, the computed binding energy of the cohesive hydrogen-bonding interactions between ZD molecules is significant. The formation of a highly associated, two-dimensional structure is therefore possible for molecularly thin Zdol films on carbon surfaces. Amorphous nitrogenated carbon, CNx, can also provide strong physisorption sites for Zdol. The interaction of ZD with imine and nitrile functionalities were studied. The interactions of the hydroxyl end group with imine centers is strongly attractive, leading to the formation of a hydrogen bond with a strength of −16 kcal/mol. Interactions with nitrile sites are somewhat less favorable with a computed binding energy of −10 kcal/mol. The nitrogen centers on CNx are negatively charged, and hence repulsive interactions with the negatively charged perfluoroalkyl ether backbone are expected. The modeling results are then used to interpret previous experimental results, and a detailed picture of the fundamental interactions that occur between PFPE's and carbon surfaces emerges." @default.
- W2085487002 created "2016-06-24" @default.
- W2085487002 creator A5028424095 @default.
- W2085487002 creator A5056371037 @default.
- W2085487002 creator A5061457309 @default.
- W2085487002 date "1999-09-01" @default.
- W2085487002 modified "2023-10-17" @default.
- W2085487002 title "Computer-Modeling Study of the Interactions of Zdol with Amorphous Carbon Surfaces" @default.
- W2085487002 cites W1266122542 @default.
- W2085487002 cites W127244401 @default.
- W2085487002 cites W135089877 @default.
- W2085487002 cites W1970330306 @default.
- W2085487002 cites W1983188077 @default.
- W2085487002 cites W1983886863 @default.
- W2085487002 cites W1986443205 @default.
- W2085487002 cites W1996462955 @default.
- W2085487002 cites W2000090273 @default.
- W2085487002 cites W2005410276 @default.
- W2085487002 cites W2008919610 @default.
- W2085487002 cites W2010181594 @default.
- W2085487002 cites W2015045064 @default.
- W2085487002 cites W2019841187 @default.
- W2085487002 cites W2020229525 @default.
- W2085487002 cites W2023271753 @default.
- W2085487002 cites W2052392596 @default.
- W2085487002 cites W2058504095 @default.
- W2085487002 cites W2064477873 @default.
- W2085487002 cites W2074351628 @default.
- W2085487002 cites W2074655291 @default.
- W2085487002 cites W2074659350 @default.
- W2085487002 cites W2079473982 @default.
- W2085487002 cites W2080536864 @default.
- W2085487002 cites W2081005180 @default.
- W2085487002 cites W2081498632 @default.
- W2085487002 cites W2086800248 @default.
- W2085487002 cites W2086957099 @default.
- W2085487002 cites W2087817950 @default.
- W2085487002 cites W2089138486 @default.
- W2085487002 cites W209124275 @default.
- W2085487002 cites W2092422065 @default.
- W2085487002 cites W2102661046 @default.
- W2085487002 cites W2104312889 @default.
- W2085487002 cites W2115090943 @default.
- W2085487002 cites W2140461379 @default.
- W2085487002 cites W2144014934 @default.
- W2085487002 cites W2146680096 @default.
- W2085487002 cites W2317492538 @default.
- W2085487002 cites W29806480 @default.
- W2085487002 cites W3004465863 @default.
- W2085487002 cites W4235949530 @default.
- W2085487002 cites W4252936171 @default.
- W2085487002 cites W59404529 @default.
- W2085487002 cites W97232440 @default.
- W2085487002 doi "https://doi.org/10.1021/la990005d" @default.
- W2085487002 hasPublicationYear "1999" @default.
- W2085487002 type Work @default.
- W2085487002 sameAs 2085487002 @default.
- W2085487002 citedByCount "58" @default.
- W2085487002 countsByYear W20854870022012 @default.
- W2085487002 countsByYear W20854870022013 @default.
- W2085487002 countsByYear W20854870022014 @default.
- W2085487002 countsByYear W20854870022015 @default.
- W2085487002 countsByYear W20854870022016 @default.
- W2085487002 countsByYear W20854870022018 @default.
- W2085487002 crossrefType "journal-article" @default.
- W2085487002 hasAuthorship W2085487002A5028424095 @default.
- W2085487002 hasAuthorship W2085487002A5056371037 @default.
- W2085487002 hasAuthorship W2085487002A5061457309 @default.
- W2085487002 hasConcept C104779481 @default.
- W2085487002 hasConcept C123380192 @default.
- W2085487002 hasConcept C126061179 @default.
- W2085487002 hasConcept C127413603 @default.
- W2085487002 hasConcept C140205800 @default.
- W2085487002 hasConcept C159985019 @default.
- W2085487002 hasConcept C167310744 @default.
- W2085487002 hasConcept C171250308 @default.
- W2085487002 hasConcept C178790620 @default.
- W2085487002 hasConcept C185592680 @default.
- W2085487002 hasConcept C19067145 @default.
- W2085487002 hasConcept C192562407 @default.
- W2085487002 hasConcept C201931942 @default.
- W2085487002 hasConcept C2780874159 @default.
- W2085487002 hasConcept C32909587 @default.
- W2085487002 hasConcept C42360764 @default.
- W2085487002 hasConcept C56052488 @default.
- W2085487002 hasConcept C75937256 @default.
- W2085487002 hasConcept C84416704 @default.
- W2085487002 hasConceptScore W2085487002C104779481 @default.
- W2085487002 hasConceptScore W2085487002C123380192 @default.
- W2085487002 hasConceptScore W2085487002C126061179 @default.
- W2085487002 hasConceptScore W2085487002C127413603 @default.
- W2085487002 hasConceptScore W2085487002C140205800 @default.
- W2085487002 hasConceptScore W2085487002C159985019 @default.
- W2085487002 hasConceptScore W2085487002C167310744 @default.
- W2085487002 hasConceptScore W2085487002C171250308 @default.
- W2085487002 hasConceptScore W2085487002C178790620 @default.
- W2085487002 hasConceptScore W2085487002C185592680 @default.
- W2085487002 hasConceptScore W2085487002C19067145 @default.