Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085632131> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2085632131 endingPage "140" @default.
- W2085632131 startingPage "132" @default.
- W2085632131 abstract "Abstract This review discusses two algorithms that can be used to compute rank‐based regression estimates. For completeness, a brief overview of rank‐based inference procedures in the context of a linear model is presented. The discussion includes geometry, estimation, inference, and diagnostics. In regard to computing the rank‐based estimates, we discuss two approaches. The first approach is based on an algebraic identity that allows one to compute the (Wilcoxon) estimates using a L 1 regression routine. The other approach is a Newton‐type algorithm. In addition, we discuss how rank‐based inference can be generalized to nonlinear and random effects models. Some simple examples using existing statistical software are also presented for the sake of illustration and comparison. Traditional least squares (LS) procedures offer the user an encompassing methodology for analyzing models, linear or nonlinear. These procedures are based on the simple premise of fitting the model by minimizing the Euclidean distance between the vector of responses and the model. Besides the fit, the LS procedures include diagnostics to check the quality of fit and an array of inference procedures including confidence intervals (regions) and tests of hypotheses. LS procedures, though, are not robust. One outlier can spoil the LS fit, its associated inference, and even its diagnostic procedures (i.e., methods which should detect the outliers). Rank‐based procedures also offer the user a complete methodology. The only essential change is to replace the Euclidean norm by another norm, so that the geometry remains the same. As with the LS procedures, these rank‐based procedures offer the user diagnostic tools to check the quality of fit and associated inference procedures. Further, in contrast to the LS procedures, they are robust to the effect of outliers. They are generalizations of simple nonparametric rank procedures such as the Wilcoxon one and two‐sample methods and they retain the high efficiency of these simple rank methods. Further, depending on the knowledge of the underlying error distribution, this rank‐based analysis can be optimized by the choice of the norm (scores). Weighted versions of the fit can obtain high (50%) breakdown. Copyright © 2009 John Wiley & Sons, Inc. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Nonparametric Methods" @default.
- W2085632131 created "2016-06-24" @default.
- W2085632131 creator A5082955736 @default.
- W2085632131 creator A5089540474 @default.
- W2085632131 creator A5056872845 @default.
- W2085632131 date "2009-09-01" @default.
- W2085632131 modified "2023-10-16" @default.
- W2085632131 title "Computational rank‐based statistics" @default.
- W2085632131 cites W1574635742 @default.
- W2085632131 cites W1735048199 @default.
- W2085632131 cites W1978263241 @default.
- W2085632131 cites W1983621551 @default.
- W2085632131 cites W1991758819 @default.
- W2085632131 cites W1996936048 @default.
- W2085632131 cites W2002300022 @default.
- W2085632131 cites W2023202204 @default.
- W2085632131 cites W2030296667 @default.
- W2085632131 cites W2030899407 @default.
- W2085632131 cites W2039839019 @default.
- W2085632131 cites W2042952044 @default.
- W2085632131 cites W2051415232 @default.
- W2085632131 cites W2056039423 @default.
- W2085632131 cites W2059471189 @default.
- W2085632131 cites W2075299521 @default.
- W2085632131 cites W2082455365 @default.
- W2085632131 cites W2096904991 @default.
- W2085632131 cites W2113060184 @default.
- W2085632131 cites W2126470108 @default.
- W2085632131 cites W2321212039 @default.
- W2085632131 cites W2489799469 @default.
- W2085632131 cites W2546599668 @default.
- W2085632131 cites W4237090348 @default.
- W2085632131 cites W4246691129 @default.
- W2085632131 cites W4250696556 @default.
- W2085632131 doi "https://doi.org/10.1002/wics.29" @default.
- W2085632131 hasPublicationYear "2009" @default.
- W2085632131 type Work @default.
- W2085632131 sameAs 2085632131 @default.
- W2085632131 citedByCount "16" @default.
- W2085632131 countsByYear W20856321312012 @default.
- W2085632131 countsByYear W20856321312013 @default.
- W2085632131 countsByYear W20856321312014 @default.
- W2085632131 countsByYear W20856321312015 @default.
- W2085632131 countsByYear W20856321312016 @default.
- W2085632131 crossrefType "journal-article" @default.
- W2085632131 hasAuthorship W2085632131A5056872845 @default.
- W2085632131 hasAuthorship W2085632131A5082955736 @default.
- W2085632131 hasAuthorship W2085632131A5089540474 @default.
- W2085632131 hasConcept C105795698 @default.
- W2085632131 hasConcept C11413529 @default.
- W2085632131 hasConcept C114614502 @default.
- W2085632131 hasConcept C134306372 @default.
- W2085632131 hasConcept C154945302 @default.
- W2085632131 hasConcept C164226766 @default.
- W2085632131 hasConcept C17231256 @default.
- W2085632131 hasConcept C2776214188 @default.
- W2085632131 hasConcept C33923547 @default.
- W2085632131 hasConcept C41008148 @default.
- W2085632131 hasConcept C79337645 @default.
- W2085632131 hasConceptScore W2085632131C105795698 @default.
- W2085632131 hasConceptScore W2085632131C11413529 @default.
- W2085632131 hasConceptScore W2085632131C114614502 @default.
- W2085632131 hasConceptScore W2085632131C134306372 @default.
- W2085632131 hasConceptScore W2085632131C154945302 @default.
- W2085632131 hasConceptScore W2085632131C164226766 @default.
- W2085632131 hasConceptScore W2085632131C17231256 @default.
- W2085632131 hasConceptScore W2085632131C2776214188 @default.
- W2085632131 hasConceptScore W2085632131C33923547 @default.
- W2085632131 hasConceptScore W2085632131C41008148 @default.
- W2085632131 hasConceptScore W2085632131C79337645 @default.
- W2085632131 hasIssue "2" @default.
- W2085632131 hasLocation W20856321311 @default.
- W2085632131 hasOpenAccess W2085632131 @default.
- W2085632131 hasPrimaryLocation W20856321311 @default.
- W2085632131 hasRelatedWork W1970705056 @default.
- W2085632131 hasRelatedWork W1989925552 @default.
- W2085632131 hasRelatedWork W2025511434 @default.
- W2085632131 hasRelatedWork W2050801211 @default.
- W2085632131 hasRelatedWork W2114312528 @default.
- W2085632131 hasRelatedWork W2324635313 @default.
- W2085632131 hasRelatedWork W2783911801 @default.
- W2085632131 hasRelatedWork W2963179930 @default.
- W2085632131 hasRelatedWork W4234996786 @default.
- W2085632131 hasRelatedWork W4245749626 @default.
- W2085632131 hasVolume "1" @default.
- W2085632131 isParatext "false" @default.
- W2085632131 isRetracted "false" @default.
- W2085632131 magId "2085632131" @default.
- W2085632131 workType "article" @default.