Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085655596> ?p ?o ?g. }
- W2085655596 endingPage "2054" @default.
- W2085655596 startingPage "2045" @default.
- W2085655596 abstract "Nowadays most of the current kernel learning approaches are showing good results in small datasets and fail to scale to large ones. As such, it is necessary to develop faster kernel optimization algorithms that perform better with larger datasets, especially, for the “Big Data” applications. This paper presents a novel fast method to optimize the Gaussian kernel function for two-class pattern classification tasks, where it is desirable for the kernel machines to use an optimized kernel that adapts well to the input data and the learning tasks. We propose to optimize the Gaussian kernel function by using the formulated kernel target alignment criterion. By adopting the Euler–Maclaurin formula and the local and global extremal properties of the approximate kernel separability criterion, the approximate criterion function can be proved to have a determined global minimum point. Thus, when the approximate criterion function is a sufficient approximation of the criterion function, through using a Newton-based algorithm, the proposed optimization is simply solved without being repeated the searching procedure with different starting points to locate the best local minimum. The proposed method is evaluated on thirteen data sets with three Gaussian-kernel-based learning algorithms. The experimental results show that the criterion function has the determined global minimum point for the all thirteen data sets, the proposed method achieves the best high time efficiency performance and the best overall classification performance." @default.
- W2085655596 created "2016-06-24" @default.
- W2085655596 creator A5027526344 @default.
- W2085655596 creator A5028717772 @default.
- W2085655596 creator A5057354930 @default.
- W2085655596 creator A5080341674 @default.
- W2085655596 date "2013-07-01" @default.
- W2085655596 modified "2023-09-23" @default.
- W2085655596 title "Optimizing the Gaussian kernel function with the formulated kernel target alignment criterion for two-class pattern classification" @default.
- W2085655596 cites W1970836819 @default.
- W2085655596 cites W1970971006 @default.
- W2085655596 cites W1995213086 @default.
- W2085655596 cites W2009175062 @default.
- W2085655596 cites W2031345312 @default.
- W2085655596 cites W2037984448 @default.
- W2085655596 cites W2041657594 @default.
- W2085655596 cites W2086444288 @default.
- W2085655596 cites W2108995755 @default.
- W2085655596 cites W2118439480 @default.
- W2085655596 cites W2121647436 @default.
- W2085655596 cites W2140095548 @default.
- W2085655596 cites W2140389641 @default.
- W2085655596 cites W2143304877 @default.
- W2085655596 cites W2146439239 @default.
- W2085655596 cites W2152353853 @default.
- W2085655596 doi "https://doi.org/10.1016/j.patcog.2012.12.012" @default.
- W2085655596 hasPublicationYear "2013" @default.
- W2085655596 type Work @default.
- W2085655596 sameAs 2085655596 @default.
- W2085655596 citedByCount "34" @default.
- W2085655596 countsByYear W20856555962014 @default.
- W2085655596 countsByYear W20856555962015 @default.
- W2085655596 countsByYear W20856555962016 @default.
- W2085655596 countsByYear W20856555962017 @default.
- W2085655596 countsByYear W20856555962018 @default.
- W2085655596 countsByYear W20856555962019 @default.
- W2085655596 countsByYear W20856555962020 @default.
- W2085655596 countsByYear W20856555962021 @default.
- W2085655596 countsByYear W20856555962022 @default.
- W2085655596 crossrefType "journal-article" @default.
- W2085655596 hasAuthorship W2085655596A5027526344 @default.
- W2085655596 hasAuthorship W2085655596A5028717772 @default.
- W2085655596 hasAuthorship W2085655596A5057354930 @default.
- W2085655596 hasAuthorship W2085655596A5080341674 @default.
- W2085655596 hasConcept C11413529 @default.
- W2085655596 hasConcept C118615104 @default.
- W2085655596 hasConcept C121332964 @default.
- W2085655596 hasConcept C122280245 @default.
- W2085655596 hasConcept C12267149 @default.
- W2085655596 hasConcept C126255220 @default.
- W2085655596 hasConcept C134517425 @default.
- W2085655596 hasConcept C14036430 @default.
- W2085655596 hasConcept C153180895 @default.
- W2085655596 hasConcept C154945302 @default.
- W2085655596 hasConcept C160446489 @default.
- W2085655596 hasConcept C163716315 @default.
- W2085655596 hasConcept C195699287 @default.
- W2085655596 hasConcept C33923547 @default.
- W2085655596 hasConcept C41008148 @default.
- W2085655596 hasConcept C62520636 @default.
- W2085655596 hasConcept C7218915 @default.
- W2085655596 hasConcept C74193536 @default.
- W2085655596 hasConcept C75866337 @default.
- W2085655596 hasConcept C78458016 @default.
- W2085655596 hasConcept C86803240 @default.
- W2085655596 hasConceptScore W2085655596C11413529 @default.
- W2085655596 hasConceptScore W2085655596C118615104 @default.
- W2085655596 hasConceptScore W2085655596C121332964 @default.
- W2085655596 hasConceptScore W2085655596C122280245 @default.
- W2085655596 hasConceptScore W2085655596C12267149 @default.
- W2085655596 hasConceptScore W2085655596C126255220 @default.
- W2085655596 hasConceptScore W2085655596C134517425 @default.
- W2085655596 hasConceptScore W2085655596C14036430 @default.
- W2085655596 hasConceptScore W2085655596C153180895 @default.
- W2085655596 hasConceptScore W2085655596C154945302 @default.
- W2085655596 hasConceptScore W2085655596C160446489 @default.
- W2085655596 hasConceptScore W2085655596C163716315 @default.
- W2085655596 hasConceptScore W2085655596C195699287 @default.
- W2085655596 hasConceptScore W2085655596C33923547 @default.
- W2085655596 hasConceptScore W2085655596C41008148 @default.
- W2085655596 hasConceptScore W2085655596C62520636 @default.
- W2085655596 hasConceptScore W2085655596C7218915 @default.
- W2085655596 hasConceptScore W2085655596C74193536 @default.
- W2085655596 hasConceptScore W2085655596C75866337 @default.
- W2085655596 hasConceptScore W2085655596C78458016 @default.
- W2085655596 hasConceptScore W2085655596C86803240 @default.
- W2085655596 hasFunder F4320321106 @default.
- W2085655596 hasFunder F4320321878 @default.
- W2085655596 hasIssue "7" @default.
- W2085655596 hasLocation W20856555961 @default.
- W2085655596 hasOpenAccess W2085655596 @default.
- W2085655596 hasPrimaryLocation W20856555961 @default.
- W2085655596 hasRelatedWork W2043888321 @default.
- W2085655596 hasRelatedWork W2098028537 @default.
- W2085655596 hasRelatedWork W2140869420 @default.
- W2085655596 hasRelatedWork W2353199197 @default.
- W2085655596 hasRelatedWork W2366185040 @default.
- W2085655596 hasRelatedWork W2382704364 @default.