Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085669183> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2085669183 endingPage "708" @default.
- W2085669183 startingPage "699" @default.
- W2085669183 abstract "Abstract Identifying the integrative aspects of brain structure and function, specifically how the connections and interactions among neuronal elements (neurons, brain regions) result in cognition and behavior, is one of the last great frontiers for scientific research. Unraveling the activity of the brain's billions of neurons and how they combine to form functional networks has been and remains restricted by both technological and ethical constraints; thus, researchers are increasingly turning to sophisticated data search techniques such as complex network clustering and graph mining algorithms to further delve into the hidden workings of the human mind. By combining such techniques with more traditional inferential statistics and then applying these to multichannel Electroencephalography (EEG) data, it is believed that it is possible to both identify and accurately describe hidden patterns and correlations in functional brain networks, which would otherwise remain undetected. The current paper presents an overview of the application of such approaches to EEG data, bringing together a variety of techniques, including complex network analysis, coherence, mutual information, approximate entropy, computer visualization, signal processing and multivariate techniques such as the one-way analysis of variance (ANOVA). This study demonstrates that the integration of these techniques enables a depth of understanding of complex brain dynamics that is not possible by other methods as well as allowing the identification of differences in system complexity that are believed to underscore normal human cognition." @default.
- W2085669183 created "2016-06-24" @default.
- W2085669183 creator A5024315036 @default.
- W2085669183 creator A5024645372 @default.
- W2085669183 creator A5056766270 @default.
- W2085669183 creator A5057379781 @default.
- W2085669183 creator A5064813470 @default.
- W2085669183 creator A5075307256 @default.
- W2085669183 creator A5089627557 @default.
- W2085669183 date "2013-01-01" @default.
- W2085669183 modified "2023-09-27" @default.
- W2085669183 title "Computational Techniques for Characterizing Cognition Using EEG Data – New Approaches" @default.
- W2085669183 cites W1993391356 @default.
- W2085669183 cites W1994992196 @default.
- W2085669183 cites W2003288952 @default.
- W2085669183 cites W2009076118 @default.
- W2085669183 cites W2024665862 @default.
- W2085669183 cites W2060899536 @default.
- W2085669183 cites W2079277602 @default.
- W2085669183 cites W2096450505 @default.
- W2085669183 cites W2107612402 @default.
- W2085669183 cites W2110997285 @default.
- W2085669183 cites W2128495200 @default.
- W2085669183 cites W2154262526 @default.
- W2085669183 cites W2485403294 @default.
- W2085669183 doi "https://doi.org/10.1016/j.procs.2013.09.151" @default.
- W2085669183 hasPublicationYear "2013" @default.
- W2085669183 type Work @default.
- W2085669183 sameAs 2085669183 @default.
- W2085669183 citedByCount "12" @default.
- W2085669183 countsByYear W20856691832014 @default.
- W2085669183 countsByYear W20856691832015 @default.
- W2085669183 countsByYear W20856691832016 @default.
- W2085669183 countsByYear W20856691832018 @default.
- W2085669183 countsByYear W20856691832019 @default.
- W2085669183 countsByYear W20856691832021 @default.
- W2085669183 crossrefType "journal-article" @default.
- W2085669183 hasAuthorship W2085669183A5024315036 @default.
- W2085669183 hasAuthorship W2085669183A5024645372 @default.
- W2085669183 hasAuthorship W2085669183A5056766270 @default.
- W2085669183 hasAuthorship W2085669183A5057379781 @default.
- W2085669183 hasAuthorship W2085669183A5064813470 @default.
- W2085669183 hasAuthorship W2085669183A5075307256 @default.
- W2085669183 hasAuthorship W2085669183A5089627557 @default.
- W2085669183 hasBestOaLocation W20856691831 @default.
- W2085669183 hasConcept C119857082 @default.
- W2085669183 hasConcept C124101348 @default.
- W2085669183 hasConcept C154945302 @default.
- W2085669183 hasConcept C169760540 @default.
- W2085669183 hasConcept C169900460 @default.
- W2085669183 hasConcept C41008148 @default.
- W2085669183 hasConcept C522805319 @default.
- W2085669183 hasConcept C86803240 @default.
- W2085669183 hasConceptScore W2085669183C119857082 @default.
- W2085669183 hasConceptScore W2085669183C124101348 @default.
- W2085669183 hasConceptScore W2085669183C154945302 @default.
- W2085669183 hasConceptScore W2085669183C169760540 @default.
- W2085669183 hasConceptScore W2085669183C169900460 @default.
- W2085669183 hasConceptScore W2085669183C41008148 @default.
- W2085669183 hasConceptScore W2085669183C522805319 @default.
- W2085669183 hasConceptScore W2085669183C86803240 @default.
- W2085669183 hasLocation W20856691831 @default.
- W2085669183 hasLocation W20856691832 @default.
- W2085669183 hasOpenAccess W2085669183 @default.
- W2085669183 hasPrimaryLocation W20856691831 @default.
- W2085669183 hasRelatedWork W2961085424 @default.
- W2085669183 hasRelatedWork W3046775127 @default.
- W2085669183 hasRelatedWork W3107602296 @default.
- W2085669183 hasRelatedWork W3170094116 @default.
- W2085669183 hasRelatedWork W3209574120 @default.
- W2085669183 hasRelatedWork W4205958290 @default.
- W2085669183 hasRelatedWork W4286629047 @default.
- W2085669183 hasRelatedWork W4306321456 @default.
- W2085669183 hasRelatedWork W4306674287 @default.
- W2085669183 hasRelatedWork W4224009465 @default.
- W2085669183 hasVolume "22" @default.
- W2085669183 isParatext "false" @default.
- W2085669183 isRetracted "false" @default.
- W2085669183 magId "2085669183" @default.
- W2085669183 workType "article" @default.